These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38836970)

  • 41. Assessing Soil Organic Matter Content in a Coal Mining Area through Spectral Variables of Different Numbers of Dimensions.
    Zhu C; Zhang Z; Wang H; Wang J; Yang S
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China.
    Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T
    Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Target Recognition of Coal and Gangue Based on Improved YOLOv5s and Spectral Technology.
    Yan P; Kan X; Zhang H; Zhang X; Chen F; Li X
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430824
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid Determination of Crude Protein Content in Alfalfa Based on Fourier Transform Infrared Spectroscopy.
    Du H; Zhang Y; Ma Y; Jiao W; Lei T; Su H
    Foods; 2024 Jul; 13(14):. PubMed ID: 39063271
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy.
    Feng J; Wang Z; West L; Li Z; Ni W
    Anal Bioanal Chem; 2011 Jul; 400(10):3261-71. PubMed ID: 21416399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gas explosion early warning method in coal mines by intelligent mining system and multivariate data analysis.
    Li H; Zhang Y; Yang W
    PLoS One; 2023; 18(11):e0293814. PubMed ID: 37917652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A prediction model of rubber content in the dried root of Taraxacum kok-saghyz Rodin based on near-infrared spectroscopy.
    Chen R; Yan Q; Tuoheti T; Xu L; Gao Q; Zhang Y; Ren H; Zheng L; Wang F; Liu Y
    Plant Methods; 2024 May; 20(1):77. PubMed ID: 38797847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants.
    Sohrabi MR; Darabi G
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():443-52. PubMed ID: 26241831
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic algorithm based artificial neural network and partial least squares regression methods to predict of breakdown voltage for transformer oils samples in power industry using ATR-FTIR spectroscopy.
    Zandbaaf S; Reza Khanmohammadi Khorrami M; Ghahraman Afshar M
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():120999. PubMed ID: 35193002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lifting wavelet transform for Vis-NIR spectral data optimization to predict wood density.
    Li Y; Via BK; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 240():118566. PubMed ID: 32570042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid analysis of the Tanreqing injection by near-infrared spectroscopy combined with least squares support vector machine and Gaussian process modeling techniques.
    Li W; Yan X; Pan J; Liu S; Xue D; Qu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jul; 218():271-280. PubMed ID: 31004970
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of Scikit and Keras Libraries for the Classification of Iron Ore Data Acquired by Laser-Induced Breakdown Spectroscopy (LIBS).
    Hao YYX; Zhang L; Ren L
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid proximate analysis of coal based on reflectance spectroscopy and deep learning.
    Xiao D; Yan Z; Li J; Fu Y; Li Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122042. PubMed ID: 36356397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression.
    Lestander TA; Rhén C
    Analyst; 2005 Aug; 130(8):1182-9. PubMed ID: 16021218
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
    Zhao MS; Wang T; Lu Y; Wang S; Wu Y
    PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis and construction of the coal and rock cutting state identification system in coal mine intelligent mining.
    Zhang M; Zhao L; Shi B
    Sci Rep; 2023 Mar; 13(1):3489. PubMed ID: 36859439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel combined intelligent algorithm prediction model for the risk of the coal and gas outburst.
    Wang Z; Xu J; Ma J; Cai Z
    Sci Rep; 2023 Sep; 13(1):15988. PubMed ID: 37749215
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retrieving zinc concentrations in topsoil with reflectance spectroscopy at Opencast Coal Mine sites.
    Guo B; Zhang B; Su Y; Zhang D; Wang Y; Bian Y; Suo L; Guo X; Bai H
    Sci Rep; 2021 Oct; 11(1):19909. PubMed ID: 34620914
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of gross calorific value from coal analysis using decision tree-based bagging and boosting techniques.
    Munshi TA; Jahan LN; Howladar MF; Hashan M
    Heliyon; 2024 Jan; 10(1):e23395. PubMed ID: 38169874
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of Dendrobium Using Laser-Induced Breakdown Spectroscopy in Combination with a Multivariate Algorithm Model.
    Zhang T; Liu Z; Ma Q; Hu D; Dai Y; Zhang X; Zhou Z
    Foods; 2024 May; 13(11):. PubMed ID: 38890910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.