These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38837060)

  • 1. Resolving spatial response heterogeneity in glioblastoma.
    Ziegenfeuter J; Delbridge C; Bernhardt D; Gempt J; Schmidt-Graf F; Hedderich D; Griessmair M; Thomas M; Meyer HS; Zimmer C; Meyer B; Combs SE; Yakushev I; Metz MC; Wiestler B
    Eur J Nucl Med Mol Imaging; 2024 Jun; ():. PubMed ID: 38837060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated analysis combining [
    Paprottka KJ; Kleiner S; Preibisch C; Kofler F; Schmidt-Graf F; Delbridge C; Bernhardt D; Combs SE; Gempt J; Meyer B; Zimmer C; Menze BH; Yakushev I; Kirschke JS; Wiestler B
    Eur J Nucl Med Mol Imaging; 2021 Dec; 48(13):4445-4455. PubMed ID: 34173008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Preliminary Study on Machine Learning-Based Evaluation of Static and Dynamic FET-PET for the Detection of Pseudoprogression in Patients with IDH-Wildtype Glioblastoma.
    Kebir S; Schmidt T; Weber M; Lazaridis L; Galldiks N; Langen KJ; Kleinschnitz C; Hattingen E; Herrlinger U; Lohmann P; Glas M
    Cancers (Basel); 2020 Oct; 12(11):. PubMed ID: 33105661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiparametric Analysis Combining DSC-MR Perfusion and [18F]FET-PET is Superior to a Single Parameter Approach for Differentiation of Progressive Glioma from Radiation Necrosis.
    Panholzer J; Malsiner-Walli G; Grün B; Kalev O; Sonnberger M; Pichler R
    Clin Neuroradiol; 2024 Jun; 34(2):351-360. PubMed ID: 38157019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular architecture mapping for early detection of glioblastoma recurrence.
    Stadlbauer A; Eyüpoglu I; Buchfelder M; Dörfler A; Zimmermann M; Heinz G; Oberndorfer S
    Neurosurg Focus; 2019 Dec; 47(6):E14. PubMed ID: 31786560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma.
    Kim JY; Yoon MJ; Park JE; Choi EJ; Lee J; Kim HS
    Neuroradiology; 2019 Nov; 61(11):1261-1272. PubMed ID: 31289886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudoprogression in GBM versus true progression in patients with glioblastoma: A multiapproach analysis.
    Sidibe I; Tensaouti F; Gilhodes J; Cabarrou B; Filleron T; Desmoulin F; Ken S; Noël G; Truc G; Sunyach MP; Charissoux M; Magné N; Lotterie JA; Roques M; Péran P; Cohen-Jonathan Moyal E; Laprie A
    Radiother Oncol; 2023 Apr; 181():109486. PubMed ID: 36706959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T
    Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB
    BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential implementation of DSC-MR perfusion and dynamic [
    Steidl E; Langen KJ; Hmeidan SA; Polomac N; Filss CP; Galldiks N; Lohmann P; Keil F; Filipski K; Mottaghy FM; Shah NJ; Steinbach JP; Hattingen E; Maurer GD
    Eur J Nucl Med Mol Imaging; 2021 Jun; 48(6):1956-1965. PubMed ID: 33241456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging glioma biology: spatial comparison of amino acid PET, amide proton transfer, and perfusion-weighted MRI in newly diagnosed gliomas.
    Schön S; Cabello J; Liesche-Starnecker F; Molina-Romero M; Eichinger P; Metz M; Karimov I; Preibisch C; Keupp J; Hock A; Meyer B; Weber W; Zimmer C; Pyka T; Yakushev I; Gempt J; Wiestler B
    Eur J Nucl Med Mol Imaging; 2020 Jun; 47(6):1468-1475. PubMed ID: 31953672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation.
    Qian X; Tan H; Zhang J; Zhao W; Chan MD; Zhou X
    Med Phys; 2016 Nov; 43(11):5889. PubMed ID: 27806598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of pre-treatment dynamic [
    Li Z; Holzgreve A; Unterrainer LM; Ruf VC; Quach S; Bartos LM; Suchorska B; Niyazi M; Wenter V; Herms J; Bartenstein P; Tonn JC; Unterrainer M; Albert NL; Kaiser L
    Eur J Nucl Med Mol Imaging; 2023 Jan; 50(2):535-545. PubMed ID: 36227357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical Utility of Different Approaches for Detection of Late Pseudoprogression in Glioblastoma With O-(2-[18F]Fluoroethyl)-L-Tyrosine PET.
    Kertels O; Mihovilovic MI; Linsenmann T; Kessler AF; Tran-Gia J; Kircher M; Brumberg J; Monoranu CM; Samnick S; Ernestus RI; Löhr M; Meyer PT; Lapa C
    Clin Nucl Med; 2019 Sep; 44(9):695-701. PubMed ID: 31274552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static
    Song S; Wang L; Yang H; Shan Y; Cheng Y; Xu L; Dong C; Zhao G; Lu J
    Eur Radiol; 2021 Jun; 31(6):4087-4096. PubMed ID: 33211141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET.
    Galldiks N; Dunkl V; Stoffels G; Hutterer M; Rapp M; Sabel M; Reifenberger G; Kebir S; Dorn F; Blau T; Herrlinger U; Hau P; Ruge MI; Kocher M; Goldbrunner R; Fink GR; Drzezga A; Schmidt M; Langen KJ
    Eur J Nucl Med Mol Imaging; 2015 Apr; 42(5):685-95. PubMed ID: 25411133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma.
    Kebir S; Khurshid Z; Gaertner FC; Essler M; Hattingen E; Fimmers R; Scheffler B; Herrlinger U; Bundschuh RA; Glas M
    Oncotarget; 2017 Jan; 8(5):8294-8304. PubMed ID: 28030820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DC-AL GAN: Pseudoprogression and true tumor progression of glioblastoma multiform image classification based on DCGAN and AlexNet.
    Li M; Tang H; Chan MD; Zhou X; Qian X
    Med Phys; 2020 Mar; 47(3):1139-1150. PubMed ID: 31885094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of multiparametric MRI based prediction model in identification of pseudoprogression in glioblastomas.
    de Godoy LL; Mohan S; Wang S; Nasrallah MP; Sakai Y; O'Rourke DM; Bagley S; Desai A; Loevner LA; Poptani H; Chawla S
    J Transl Med; 2023 Apr; 21(1):287. PubMed ID: 37118754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.