BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38837178)

  • 1. Micronano Synergetic Three-Dimensional Bioelectronics: A Revolutionary Breakthrough Platform for Cardiac Electrophysiology.
    Zheng J; Fang J; Xu D; Liu H; Wei X; Qin C; Xue J; Gao Z; Hu N
    ACS Nano; 2024 Jun; 18(24):15332-15357. PubMed ID: 38837178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-Cell Nanoelectronics: Opening the Door to Intracellular Electrophysiology.
    Xu D; Mo J; Xie X; Hu N
    Nanomicro Lett; 2021 May; 13(1):127. PubMed ID: 34138366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.
    Abbott J; Ye T; Ham D; Park H
    Acc Chem Res; 2018 Mar; 51(3):600-608. PubMed ID: 29437381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronized intracellular and extracellular recording of action potentials by three-dimensional nanoroded electroporation.
    Xu D; Fang J; Zhang M; Wang H; Zhang T; Hang T; Xie X; Hu N
    Biosens Bioelectron; 2021 Nov; 192():113501. PubMed ID: 34273736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular recording of cardiomyocyte action potentials by nanobranched microelectrode array.
    Hu N; Xu D; Fang J; Li H; Mo J; Zhou M; Li B; Chen HJ; Zhang T; Feng J; Hang T; Xia W; Chen X; Liu X; He G; Xie X
    Biosens Bioelectron; 2020 Dec; 169():112588. PubMed ID: 32956905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging Bioelectronics for Brain Organoid Electrophysiology.
    Tasnim K; Liu J
    J Mol Biol; 2022 Feb; 434(3):167165. PubMed ID: 34293341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording.
    Xiang Y; Shi K; Li Y; Xue J; Tong Z; Li H; Li Z; Teng C; Fang J; Hu N
    Nanomicro Lett; 2024 Feb; 16(1):132. PubMed ID: 38411852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the Cell-Nanostructure Interface: Nanoconcave/Nanoconvex Device for Intracellular Recording of Cardiomyocytes.
    Wang H; Xue J; Li Y; Shi K; Fang J; Zheng J; Lyu X; Gao Z; Xu D; Hu N
    Nano Lett; 2023 Dec; 23(24):11884-11891. PubMed ID: 38064276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Multidimensional Cardiac Biosensing Technologies: From Electrophysiology to Mechanical Motion and Contractile Force.
    Wei X; Zhuang L; Li H; He C; Wan H; Hu N; Wang P
    Small; 2020 Dec; 16(50):e2005828. PubMed ID: 33230867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanodevices for cellular interfaces and electrophysiological recording.
    Yang L; Li Y; Fang Y
    Adv Mater; 2013 Jul; 25(28):3881-7. PubMed ID: 24048974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues.
    Duan X; Fu TM; Liu J; Lieber CM
    Nano Today; 2013 Aug; 8(4):351-373. PubMed ID: 24073014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heart-on-a-Chip Model with Integrated Extra- and Intracellular Bioelectronics for Monitoring Cardiac Electrophysiology under Acute Hypoxia.
    Liu H; Bolonduro OA; Hu N; Ju J; Rao AA; Duffy BM; Huang Z; Black LD; Timko BP
    Nano Lett; 2020 Apr; 20(4):2585-2593. PubMed ID: 32092276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable and Robust Hollow Nanopillar Electrode for Enhanced Intracellular Action Potential Recording.
    Fang J; Xu D; Wang H; Wu J; Li Y; Yang T; Liu C; Hu N
    Nano Lett; 2023 Jan; 23(1):243-251. PubMed ID: 36537828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Ionizing Radiation on Electrophysiological Behavior of Human-induced Ipsc-derived Cardiomyocytes on Multielectrode Arrays.
    Becker BV; Seeger T; Beiert T; Antwerpen M; Palnek A; Port M; Ullmann R
    Health Phys; 2018 Jul; 115(1):21-28. PubMed ID: 29787427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system.
    Zhu H; Scharnhorst KS; Stieg AZ; Gimzewski JK; Minami I; Nakatsuji N; Nakano H; Nakano A
    Sci Rep; 2017 Mar; 7():43210. PubMed ID: 28266620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowire-Enabled Bioelectronics.
    Zhang A; Lee JH; Lieber CM
    Nano Today; 2021 Jun; 38():. PubMed ID: 36970717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal, multimodal cell-based biosensing platform for optimal intracellular action potential recording.
    Xu D; Fang J; Yadid M; Zhang M; Wang H; Xia Q; Li H; Cao N; Dvir T; Hu N
    Biosens Bioelectron; 2022 Jun; 206():114122. PubMed ID: 35245868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous Polyethylene Terephthalate Nanotemplate Electrodes for Sensitive Intracellular Recording of Action Potentials.
    Xu D; Fang J; Zhang M; Xia Q; Li H; Hu N
    Nano Lett; 2022 Mar; 22(6):2479-2489. PubMed ID: 35254073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-Implantable Bioelectronics.
    Fang J; Huang S; Liu F; He G; Li X; Huang X; Chen HJ; Xie X
    Nanomicro Lett; 2022 May; 14(1):125. PubMed ID: 35633391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisite Intracellular Recordings by MEA.
    Spira ME; Huang SH; Shmoel N; Erez H
    Adv Neurobiol; 2019; 22():125-153. PubMed ID: 31073934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.