These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38837221)
1. Combining descriptive and predictive modeling to systematically design depth filtration-based harvest processes for biologics. Liu P; Hartmann M; Shankaran A; Li H; Welsh J Biotechnol Bioeng; 2024 Sep; 121(9):2924-2935. PubMed ID: 38837221 [TBL] [Abstract][Full Text] [Related]
2. Modeling flux in tangential flow filtration using a reverse asymmetric membrane for Chinese hamster ovary cell clarification. Zhang D; Patel P; Strauss D; Qian X; Wickramasinghe SR Biotechnol Prog; 2021 May; 37(3):e3115. PubMed ID: 33350596 [TBL] [Abstract][Full Text] [Related]
3. Contributions of Chinese hamster ovary cell derived extracellular vesicles and other cellular materials to hollow fiber filter fouling during perfusion manufacturing of monoclonal antibodies. Zhang Y; Madabhushi S; Tang T; Raza H; Busch DJ; Zhao X; Ormes J; Xu S; Moroney J; Jiang R; Lin H; Liu R Biotechnol Bioeng; 2024 May; 121(5):1674-1687. PubMed ID: 38372655 [TBL] [Abstract][Full Text] [Related]
4. Single-stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production. O'Mara B; Singh NK; Menendez A; Tipton B; Vail A; Voloshin A; Buechler Y; Anderson SM Biotechnol Prog; 2023 Mar; 39(2):e3323. PubMed ID: 36598038 [TBL] [Abstract][Full Text] [Related]
5. Robust depth filter sizing for centrate clarification. Lutz H; Chefer K; Felo M; Cacace B; Hove S; Wang B; Blanchard M; Oulundsen G; Piper R; Zhao X Biotechnol Prog; 2015; 31(6):1542-50. PubMed ID: 26518411 [TBL] [Abstract][Full Text] [Related]
6. Leveraging mathematical models for optimizing filter utility at manufacturing scale. Rose S; Dhingra A; Joseph A; Coffman J Biotechnol Bioeng; 2023 Jun; 120(6):1584-1591. PubMed ID: 36920041 [TBL] [Abstract][Full Text] [Related]
7. Analysis of fouling and breakthrough of process related impurities during depth filtration using confocal microscopy. Parau M; Johnson TF; Pullen J; Bracewell DG Biotechnol Prog; 2022 Mar; 38(2):e3233. PubMed ID: 35037432 [TBL] [Abstract][Full Text] [Related]
8. Depth filter material process interaction in the harvest of mammalian cells. Parau M; Pullen J; Bracewell DG Biotechnol Prog; 2023; 39(3):e3329. PubMed ID: 36775837 [TBL] [Abstract][Full Text] [Related]
9. Use of scanning electron microscopy and energy dispersive X-ray spectroscopy to identify key fouling species during alternating tangential filtration. Sundar V; Zhang D; Qian X; Wickramasinghe SR; Smelko JP; Carbrello C; Jabbour Al Maalouf Y; Zydney AL Biotechnol Prog; 2023; 39(3):e3336. PubMed ID: 36825399 [TBL] [Abstract][Full Text] [Related]
10. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant. Stressmann M; Moresoli C Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898 [TBL] [Abstract][Full Text] [Related]
11. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. McNerney T; Thomas A; Senczuk A; Petty K; Zhao X; Piper R; Carvalho J; Hammond M; Sawant S; Bussiere J MAbs; 2015; 7(2):413-28. PubMed ID: 25706650 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a single-use disk stack centrifuge for improved efficiency and sustainability at 1000 L GMP manufacturing scale. Walker J; Lam Y; Loman A; Smelko JP; Rohr M Biotechnol Bioeng; 2023 Nov; 120(11):3347-3356. PubMed ID: 37539666 [TBL] [Abstract][Full Text] [Related]
13. Modeling of Filtration Processes-Microfiltration and Depth Filtration for Harvest of a Therapeutic Protein Expressed in Sampath M; Shukla A; Rathore AS Bioengineering (Basel); 2014 Dec; 1(4):260-277. PubMed ID: 28955028 [TBL] [Abstract][Full Text] [Related]
14. GMP implementation of a hybrid continuous manufacturing process for a recombinant non-mAb protein-A case study. Natarajan V; Soice N; Mullen J; Bull D Biotechnol Prog; 2024; 40(4):e3459. PubMed ID: 38553839 [TBL] [Abstract][Full Text] [Related]
15. Scale-up issues for commercial depth filters in bioprocessing. Nejatishahidein N; Kim M; Jung SY; Borujeni EE; Fernandez-Cerezo L; Roush DJ; Borhan A; Zydney AL Biotechnol Bioeng; 2022 Apr; 119(4):1105-1114. PubMed ID: 35032027 [TBL] [Abstract][Full Text] [Related]
16. Impact of micro and macroporous TFF membranes on product sieving and chromatography loading for perfusion cell culture. Pinto NDS; Napoli WN; Brower M Biotechnol Bioeng; 2020 Jan; 117(1):117-124. PubMed ID: 31612989 [TBL] [Abstract][Full Text] [Related]
17. Cell-culture process optimization via model-based predictions of metabolism and protein glycosylation. Reddy JV; Raudenbush K; Papoutsakis ET; Ierapetritou M Biotechnol Adv; 2023 Oct; 67():108179. PubMed ID: 37257729 [TBL] [Abstract][Full Text] [Related]
18. Depth filtration for clarification of intensified lentiviral vector suspension cell culture. Mayani M; Nellimarla S; Mangalathillam R; Rao H; Patarroyo-White S; Ma J; Figueroa B Biotechnol Prog; 2024; 40(2):e3409. PubMed ID: 37985144 [TBL] [Abstract][Full Text] [Related]
19. Effect of inner diameter, filter length, and pore size on hollow fiber filter fouling during perfusion cell culture. WuDunn D; Squeri A; Vu J; Dhingra A; Coffman J; Lee K Biotechnol Prog; 2024; 40(3):e3440. PubMed ID: 38343012 [TBL] [Abstract][Full Text] [Related]
20. Model-based analysis of the effect of different operating conditions on fouling mechanisms in a membrane bioreactor. Sabia G; Ferraris M; Spagni A Environ Sci Pollut Res Int; 2016 Jan; 23(2):1598-609. PubMed ID: 26377972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]