BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38837236)

  • 1. NFC-enabled photothermal-based microfluidic paper analytical device for glucose detection.
    Khachornsakkul K; Del-Rio-Ruiz R; Asci C; Sonkusale S
    Analyst; 2024 Jun; ():. PubMed ID: 38837236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomaterials integrated with microfluidic paper-based analytical devices for enzyme-free glucose quantification.
    Khachornsakkul K; Rybicki FJ; Sonkusale S
    Talanta; 2023 Aug; 260():124538. PubMed ID: 37087948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal biosensing integrated with microfluidic paper-based analytical device for sensitive quantification of sarcosine.
    Khachornsakkul K; Leelasattarathkul T
    Talanta; 2024 May; 271():125628. PubMed ID: 38219320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smartphone-Based Chemiluminescent Origami µPAD for the Rapid Assessment of Glucose Blood Levels.
    Calabria D; Zangheri M; Trozzi I; Lazzarini E; Pace A; Mirasoli M; Guardigli M
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Sensitive Photothermal Microfluidic Thread-Based Duplex Immunosensor for Point-of-Care Monitoring.
    Khachornsakkul K; Del-Rio-Ruiz R; Zeng W; Sonkusale S
    Anal Chem; 2023 Aug; 95(34):12802-12810. PubMed ID: 37578458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat.
    Promsuwan K; Soleh A; Samoson K; Saisahas K; Wangchuk S; Saichanapan J; Kanatharana P; Thavarungkul P; Limbut W
    Talanta; 2023 May; 256():124266. PubMed ID: 36693284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic paper-based analytical device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous detection of glucose and uric acid with use of a smartphone.
    Zheng J; Zhu M; Kong J; Li Z; Jiang J; Xi Y; Li F
    Talanta; 2022 Jan; 237():122954. PubMed ID: 34736679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Chemically Patterned Microfluidic Paper-based Analytical Device (C-µPAD) for Point-of-Care Diagnostics.
    Lam T; Devadhasan JP; Howse R; Kim J
    Sci Rep; 2017 Apr; 7(1):1188. PubMed ID: 28446756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold Nanomaterial-Based Microfluidic Paper Analytical Device for Simultaneous Quantification of Gram-Negative Bacteria and Nitrite Ions in Water Samples.
    Khachornsakkul K; Del-Rio-Ruiz R; Creasey H; Widmer G; Sonkusale SR
    ACS Sens; 2023 Nov; 8(11):4364-4373. PubMed ID: 37997658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric and photothermal dual-mode immunoassay of aflatoxin B
    Huang S; Lai W; Liu B; Xu M; Zhuang J; Tang D; Lin Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121782. PubMed ID: 36049298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric detection of H
    Şen M; Yüzer E; Doğan V; Avcı İ; Ensarioğlu K; Aykaç A; Kaya N; Can M; Kılıç V
    Mikrochim Acta; 2022 Sep; 189(10):373. PubMed ID: 36068359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a photothermal-sensing microfluidic paper-based analytical chip (PT-Chip) for sensitive quantification of diethylstilbestrol.
    Wang M; Wang Y; Li X; Zhang H
    Food Chem; 2023 Feb; 402():134128. PubMed ID: 36130434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Field Communication Tag for Colorimetric Glutathione Determination with a Paper-Based Microfluidic Device.
    Ortiz-Gómez I; Rivadeneyra A; Salmerón JF; Orbe-Payá I; Morales DP; Capitán-Vallvey LF; Salinas-Castillo A
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.
    DeHennis A; Getzlaff S; Grice D; Mailand M
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):18-28. PubMed ID: 26372659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cascaded nanozyme-based high-throughput microfluidic device integrating with glucometer and smartphone for point-of-care pheochromocytoma diagnosis.
    Liu X; Fang Y; Chen X; Shi W; Wang X; He Z; Wang F; Li C
    Biosens Bioelectron; 2024 May; 251():116105. PubMed ID: 38340579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic paper device with on-site heating to produce reactive peroxide species for enhanced smartphone enabled chemiluminescence signal.
    Kumar PS; Bhand S; Das AK; Goel S
    Talanta; 2022 Jan; 236():122858. PubMed ID: 34635242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of smartphone-adapted signal visualization platform for dual-mode detection of H
    Meng X; Wang J; Yang Z; Liu Z; Zhang Z; He S; Li C
    Talanta; 2024 Apr; 270():125517. PubMed ID: 38091744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers.
    Zhou W; Fu G; Li X
    Anal Chem; 2021 Jun; 93(21):7754-7762. PubMed ID: 33999603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distance-based paper analytical device for multiplexed quantification of cytokine biomarkers using carbon dots integrated with molecularly imprinted polymer.
    Khachornsakkul K; Del-Rio-Ruiz R; Chheang L; Zeng W; Sonkusale S
    Lab Chip; 2024 Apr; 24(8):2262-2271. PubMed ID: 38501606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection.
    Kou X; Tong L; Shen Y; Zhu W; Yin L; Huang S; Zhu F; Chen G; Ouyang G
    Biosens Bioelectron; 2020 May; 156():112095. PubMed ID: 32174563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.