BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38837395)

  • 1. HE2Gene: image-to-RNA translation via multi-task learning for spatial transcriptomics data.
    Chen X; Lin J; Wang Y; Zhang W; Xie W; Zheng Z; Wong KC
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38837395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation.
    Duan Z; Riffle D; Li R; Liu J; Min MR; Zhang J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38806165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semla: a versatile toolkit for spatially resolved transcriptomics analysis and visualization.
    Larsson L; Franzén L; Ståhl PL; Lundeberg J
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37846051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data.
    Yuan M; Wan H; Wang Z; Guo Q; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38279647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating spatial gene expression and breast tumour morphology via deep learning.
    He B; Bergenstråhle L; Stenbeck L; Abid A; Andersson A; Borg Å; Maaskola J; Lundeberg J; Zou J
    Nat Biomed Eng; 2020 Aug; 4(8):827-834. PubMed ID: 32572199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Methods for Demystifying Spatial Transcriptomics.
    Sammeth M; Mudra S; Bialdiga S; Hartmannsberger B; Kramer S; Rittner H
    Methods Mol Biol; 2024; 2802():515-546. PubMed ID: 38819570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.
    Zhang L; Liang S; Wan L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in spatial transcriptomics and its applications in cancer research.
    Jin Y; Zuo Y; Li G; Liu W; Pan Y; Fan T; Fu X; Yao X; Peng Y
    Mol Cancer; 2024 Jun; 23(1):129. PubMed ID: 38902727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution.
    Liao J; Qian J; Fang Y; Chen Z; Zhuang X; Zhang N; Shao X; Hu Y; Yang P; Cheng J; Hu Y; Yu L; Yang H; Zhang J; Lu X; Shao L; Wu D; Gao Y; Chen H; Fan X
    Nat Commun; 2022 Oct; 13(1):6498. PubMed ID: 36310179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics Experiments: Review, Tutorial, and Perspectives.
    Jeon H; Xie J; Jeon Y; Jung KJ; Gupta A; Chang W; Chung D
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HelPredictor models single-cell transcriptome to predict human embryo lineage allocation.
    Liang P; Zheng L; Long C; Yang W; Yang L; Zuo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics.
    Shengquan C; Boheng Z; Xiaoyang C; Xuegong Z; Rui J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i299-i307. PubMed ID: 34252941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.