BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3883743)

  • 1. Optimum effectiveness of intestinal alpha-glucosidase inhibitors: importance of uniform distribution through a meal.
    O'Dea K; Turton J
    Am J Clin Nutr; 1985 Mar; 41(3):511-6. PubMed ID: 3883743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scope and specificity of acarbose in slowing carbohydrate absorption in man.
    Jenkins DJ; Taylor RH; Goff DV; Fielden H; Misiewicz JJ; Sarson DL; Bloom SR; Alberti KG
    Diabetes; 1981 Nov; 30(11):951-4. PubMed ID: 7028548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and short term effects of intestinal alpha-glucosidase inhibition on gut hormone responses in man.
    Uttenthal LO; Ukponmwan OO; Ghiglione M; Bloom SR
    Dig Dis Sci; 1987 Feb; 32(2):139-44. PubMed ID: 3542445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of an alpha-glucoside hydrolase inhibitor on glycemia and the absorption of sucrose in man determined using a tracer method.
    Radziuk J; Kemmer F; Morishima T; Berchtold P; Vranic M
    Diabetes; 1984 Mar; 33(3):207-13. PubMed ID: 6365657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined use of guar and acarbose in reduction of postprandial glycaemia.
    Jenkins DJ; Taylor RH; Nineham R; Goff DV; Bloom SR; Sarson D; Alberti KG
    Lancet; 1979 Nov; 2(8149):924-7. PubMed ID: 91023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-Glucosidase inhibition improves postprandial hyperglycemia and decreases insulin requirements in insulin-dependent diabetes mellitus.
    Dimitriadis GD; Tessari P; Go VL; Gerich JE
    Metabolism; 1985 Mar; 34(3):261-5. PubMed ID: 3883097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of serum levels of gastric inhibitory polypeptide and insulin to sucrose ingestion during long-term application of acarbose.
    Fölsch UR; Ebert R; Creutzfeldt W
    Scand J Gastroenterol; 1981; 16(5):629-32. PubMed ID: 7034156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of disaccharide digestion in rat intestine by the alpha-glucosidase inhibitor acarbose (BAY g 5421).
    Krause HP; Keup U; Puls W
    Digestion; 1982; 23(4):232-8. PubMed ID: 6754513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of gut hormone response to food by soluble fiber and alpha-glucosidase inhibition.
    Jenkins DJ; Taylor RH; Nineham R; Goff DV; Bloom SR; Sarson DL; Misiewicz JJ; Alberti KG
    Am J Gastroenterol; 1988 Apr; 83(4):393-7. PubMed ID: 2831707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate and effects of the alpha-glucosidase inhibitor acarbose in humans. An intestinal slow-marker perfusion study.
    Ruppin H; Hagel J; Feuerbach W; Schutt H; Pichl J; Hillebrand I; Bloom S; Domschke W
    Gastroenterology; 1988 Jul; 95(1):93-9. PubMed ID: 3286363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of the alpha-glucosidase inhibitor BAY g 5421 (Acarbose) on postprandial blood glucose, serum insulin, and triglyceride levels: dose-time-response relationships in man.
    Hillebrand I; Boehme K; Frank G; Fink H; Berchtold P
    Res Exp Med (Berl); 1979 Apr; 175(1):87-94. PubMed ID: 375343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the disaccharidase inhibitor acarbose on meal and intravenous glucose tolerance in normal man.
    Dimitriadis G; Tessari P; Go V; Gerich J
    Metabolism; 1982 Aug; 31(8):841-3. PubMed ID: 7047984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of the alpha-glucosidase inhibitor BAY g 5421 (Acarbose) on meal-stimulated elevations of circulating glucose, insulin, and triglyceride levels in man.
    Hillebrand I; Boehme K; Frank G; Fink H; Berchtold P
    Res Exp Med (Berl); 1979 Apr; 175(1):81-6. PubMed ID: 375342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of acarbose on starch hydrolysis. Study in healthy subjects, ileostomy patients, and in vitro.
    Hiele M; Ghoos Y; Rutgeerts P; Vantrappen G
    Dig Dis Sci; 1992 Jul; 37(7):1057-64. PubMed ID: 1618053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of the small intestine to induced maldigestion in rats. Experimental pancreatic atrophy and acarbose feeding.
    Creutzfeldt W; Fölsch UR; Elsenhans B; Ballmann M; Conlon JM
    Scand J Gastroenterol Suppl; 1985; 112():45-53. PubMed ID: 3892654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of gastric emptying by acarbose is correlated with GLP-1 response and accompanied by CCK release.
    Enç FY; Imeryüz N; Akin L; Turoğlu T; Dede F; Haklar G; Tekeşin N; Bekiroğlu N; Yeğen BC; Rehfeld JF; Holst JJ; Ulusoy NB
    Am J Physiol Gastrointest Liver Physiol; 2001 Sep; 281(3):G752-63. PubMed ID: 11518688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of sucrose- and starch-induced glycaemic and hormonal responses by the alpha-glucosidase inhibitor emiglitate (BAY o 1248) in healthy volunteers.
    Lembcke B; Fölsch UR; Gatzemeier W; Lücke B; Ebert R; Siegel E; Creutzfeldt W
    Eur J Clin Pharmacol; 1991; 41(6):561-7. PubMed ID: 1815967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A risk-benefit appraisal of acarbose in the management of non-insulin-dependent diabetes mellitus.
    Santeusanio F; Compagnucci P
    Drug Saf; 1994 Dec; 11(6):432-44. PubMed ID: 7727053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of physical form of carbohydrate on the postprandial glucose, insulin, and gastric inhibitory polypeptide responses in type 2 diabetes.
    Collier G; O'Dea K
    Am J Clin Nutr; 1982 Jul; 36(1):10-4. PubMed ID: 7046411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of metabolic control in insulin dependent diabetics treated with the alpha-glucosidase inhibitor acarbose for two months.
    Gérard J; Luyckx AS; Lefebvre PJ
    Diabetologia; 1981 Nov; 21(5):446-51. PubMed ID: 7028558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.