These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38837665)

  • 1. Beyond Conventional Enhancements: Self-Organization of a Buffer Material on Tin Oxide as a Game-Changer for Improving the Performance of Inverted Organic Solar Cells.
    Wu J; Li Y; Tang F; Guo Y; Liu G; Wu S; Hu B; Fu Y; Lu X; Lu G; He Z; Zhu X; Peng X
    Small; 2024 Oct; 20(40):e2404066. PubMed ID: 38837665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outstanding Fill Factor in Inverted Organic Solar Cells with SnO
    Di Mario L; Garcia Romero D; Wang H; Tekelenburg EK; Meems S; Zaharia T; Portale G; Loi MA
    Adv Mater; 2024 May; 36(20):e2301404. PubMed ID: 36999655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annealing-Insensitive, Alcohol-Processed MoO
    Song C; Huang X; Zhan T; Ding L; Li Y; Xue X; Lin X; Peng H; Cai P; Duan C; Chen J
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40851-40861. PubMed ID: 36044804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co
    Zhang Y; Zhao X; Han X; Li Y; Zhang Z; Li T; Xing J; Zuo X; Lin Y
    Langmuir; 2021 Mar; 37(10):3173-3179. PubMed ID: 33657318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the performance of ternary organic solar cells using metal oxides as charge-transport layers.
    Liu Z; Wang L; Xie X; Chen P
    Phys Chem Chem Phys; 2023 Jun; 25(22):15263-15270. PubMed ID: 37221883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the SnO
    Kong T; Wang R; Zheng D; Yu J
    Front Chem; 2021; 9():703561. PubMed ID: 34249871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zwitterion Nondetergent Sulfobetaine-Modified SnO
    Tran VH; Kim SK; Lee SH
    ACS Omega; 2019 Nov; 4(21):19225-19237. PubMed ID: 31763546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Performance and Stable Organic Solar Cells Fabricated by Y-Series Small Molecular Materials as the Interfacial Modified Layer.
    Liu Y; Zhang D; Yang G; Wang R; Yu J
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36910-36917. PubMed ID: 35925803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells.
    Ding G; Chen T; Wang M; Xia X; He C; Zheng X; Li Y; Zhou D; Lu X; Zuo L; Xu Z; Chen H
    Nanomicro Lett; 2023 Apr; 15(1):92. PubMed ID: 37036549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells.
    Xu X; Jing W; Meng H; Guo Y; Yu L; Li R; Peng Q
    Adv Mater; 2023 Mar; 35(12):e2208997. PubMed ID: 36650665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient Organic Solar Cells Enabled by the Incorporation of a Sulfonated Graphene Doped PEDOT:PSS Interlayer.
    Pei S; Xiong X; Zhong W; Xue X; Zhang M; Hao T; Zhang Y; Liu F; Zhu L
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34814-34821. PubMed ID: 35876251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Temperature UVO-Sintered ZnO/SnO
    Zou Z; Li F; Fang J; Chen M; Sun X; Li C; Tao J; Liao G; Zhang J
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Efficiency of Organic Solar Cells with Methionine as Electron Transport Layer.
    Xu Y; Zhou H; Duan P; Shan B; Xu W; Wang J; Liu M; Zhang F; Sun Q
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Self-Organized Poly(vinylpyrrolidone)-Based Cathode Interlayer in Inverted Fullerene-Free Organic Solar Cells.
    Yang B; Zhang S; Li S; Yao H; Li W; Hou J
    Adv Mater; 2019 Jan; 31(2):e1804657. PubMed ID: 30417455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of Zinc Oxide with Zirconium Doping for Efficient Inverted Organic Solar Cells.
    Song X; Liu G; Gao W; Di Y; Yang Y; Li F; Zhou S; Zhang J
    Small; 2021 Feb; 17(7):e2006387. PubMed ID: 33475246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zirconium Oxide Doped Organosilica Nanodots as Light- and Charge-Management Cathode Interlayer for Highly Efficient and Stable Inverted Organic Solar Cells.
    Cui M; Rong Q; Wang R; Ye D; Li N; Nian L
    Small; 2024 Aug; 20(33):e2311339. PubMed ID: 38529739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Managing Interfacial Defects and Charge-Carriers Dynamics by a Cesium-Doped SnO
    Adnan M; Lee W; Irshad Z; Kim S; Yun S; Han H; Chang HS; Lim J
    Small; 2024 Sep; 20(37):e2402268. PubMed ID: 38733239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random Copolymerization Strategy for Host Polymer Donor PM6 Enables Improved Efficiency Both in Binary and Ternary Organic Solar Cells.
    Yang N; Cheng Y; Kim S; Huang B; Liu Z; Deng J; Wang J; Yang C; Wu F; Chen L
    ChemSusChem; 2022 Apr; 15(8):e202200138. PubMed ID: 35212463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Polymer Zwitterions and Zinc Oxide for High-Performance Inverted Organic Solar Cells.
    Guo Y; Liu M; Yuan C; Ren Z; Liu Y
    Macromol Rapid Commun; 2022 Nov; 43(22):e2200291. PubMed ID: 35642107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tin Oxide Electron Transport Layers for Air-/Solution-Processed Conventional Organic Solar Cells.
    Hoff A; Farahat ME; Pahlevani M; Welch GC
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1568-1577. PubMed ID: 34978404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.