BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38837930)

  • 1. Large-Scale Cortical Network Analysis and Classification of MI-BCI Tasks Based on Bayesian Nonnegative Matrix Factorization.
    Yu S; Mao B; Zhou Y; Liu Y; Yi C; Li F; Yao D; Xu P; San Liang X; Zhang T
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2187-2197. PubMed ID: 38837930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
    Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P
    Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model.
    Yu S; Wang Z; Wang F; Chen K; Yao D; Xu P; Zhang Y; Wang H; Zhang T
    Cereb Cortex; 2024 Jan; 34(2):. PubMed ID: 38183186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient resting-state EEG network facilitates motor imagery performance.
    Zhang R; Yao D; Valdés-Sosa PA; Li F; Li P; Zhang T; Ma T; Li Y; Xu P
    J Neural Eng; 2015 Dec; 12(6):066024. PubMed ID: 26529439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature extraction of four-class motor imagery EEG signals based on functional brain network.
    Ai Q; Chen A; Chen K; Liu Q; Zhou T; Xin S; Ji Z
    J Neural Eng; 2019 Apr; 16(2):026032. PubMed ID: 30699389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling motor imagery brain patterns using explainable artificial intelligence based on Shapley values.
    Pérez-Velasco S; Marcos-Martínez D; Santamaría-Vázquez E; Martínez-Cagigal V; Moreno-Calderón S; Hornero R
    Comput Methods Programs Biomed; 2024 Apr; 246():108048. PubMed ID: 38308997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroencephalogram classification in motor-imagery brain-computer interface applications based on double-constraint nonnegative matrix factorization.
    Su J; Yang Z; Yan W; Sun W
    Physiol Meas; 2020 Aug; 41(7):075007. PubMed ID: 32590360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing large-scale cortical brain networks from scalp EEG with Bayesian nonnegative matrix factorization.
    Yi C; Chen C; Si Y; Li F; Zhang T; Liao Y; Jiang Y; Yao D; Xu P
    Neural Netw; 2020 May; 125():338-348. PubMed ID: 32172143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-attention-based convolutional neural network and time-frequency common spatial pattern for enhanced motor imagery classification.
    Zhang R; Liu G; Wen Y; Zhou W
    J Neurosci Methods; 2023 Oct; 398():109953. PubMed ID: 37611877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Channel Selection of Multiclass Motor Imagery Classification Based on Fusion Convolutional Neural Network with Attention Blocks.
    Khabti J; AlAhmadi S; Soudani A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of Brain-Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):60-68. PubMed ID: 29324403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Frequency Cross Mutual Information Analysis of the Brain Functional Networks Underlying Multiclass Motor Imagery.
    Gong A; Liu J; Chen S; Fu Y
    J Mot Behav; 2018; 50(3):254-267. PubMed ID: 28813231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks.
    Kwon OY; Lee MH; Guan C; Lee SW
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):3839-3852. PubMed ID: 31725394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Channel-Correlation Network for Motor Imagery Decoding From the Same Limb.
    Ma X; Qiu S; Wei W; Wang S; He H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):297-306. PubMed ID: 31725383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mu-Beta event-related (de)synchronization and EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI.
    Tariq M; Trivailo PM; Simic M
    PLoS One; 2020; 15(3):e0230184. PubMed ID: 32182270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.