These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38838080)

  • 1. Numerical Investigation of Funicular Liquid Bridges between Three Spherical Grains in a Bidisperse Particulate System.
    Wang S; Wang JP; Ge S; Li X; Dadda A
    Langmuir; 2024 Jun; 40(24):12744-12754. PubMed ID: 38838080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid morphologies and capillary forces between three spherical beads.
    Semprebon C; Scheel M; Herminghaus S; Seemann R; Brinkmann M
    Phys Rev E; 2016 Jul; 94(1-1):012907. PubMed ID: 27575206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on the Rupture Behavior of the Liquid Bridge between Three Rigid Spheres.
    Wang S; Liu F; Cui J; Miao M; Pu C
    Langmuir; 2022 Nov; 38(45):13857-13869. PubMed ID: 36322957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daisy-shaped liquid bridges in foam-filled granular packings.
    Pitois O; Salamé A; Khidas Y; Ceccaldi M; Langlois V; Vincent-Bonnieu S
    J Colloid Interface Sci; 2023 May; 638():552-560. PubMed ID: 36773517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pendular, Funicular, and Capillary Bridges: Results for Two Dimensions.
    Urso ME; Lawrence CJ; Adams MJ
    J Colloid Interface Sci; 1999 Dec; 220(1):42-56. PubMed ID: 10550239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The capillary bridge between two spheres: New closed-form equations in a two century old problem.
    Lian G; Seville J
    Adv Colloid Interface Sci; 2016 Jan; 227():53-62. PubMed ID: 26684365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sculpting sandcastles grain by grain: self-assembled sand towers.
    Pacheco-Vázquez F; Moreau F; Vandewalle N; Dorbolo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051303. PubMed ID: 23214775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.
    Sun X; Sakai M
    Phys Rev E; 2016 Dec; 94(6-1):063301. PubMed ID: 28085306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow of wet granular materials: A numerical study.
    Khamseh S; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022201. PubMed ID: 26382388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids.
    Bossler F; Koos E
    Langmuir; 2016 Feb; 32(6):1489-501. PubMed ID: 26807651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pouring of Grains onto Liquid Surfaces: Dispersion or Lump Formation?
    Ong XY; Taylor SE; Ramaioli M
    Langmuir; 2019 Aug; 35(34):11150-11156. PubMed ID: 31394037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Combined Experimental and Numerical Modeling Study of the Deformation and Rupture of Axisymmetric Liquid Bridges under Coaxial Stretching.
    Zhuang J; Ju YS
    Langmuir; 2015 Sep; 31(37):10173-82. PubMed ID: 26323057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of geometry on the dewetting of granular chains by evaporation.
    Cejas CM; Hough LA; Frétigny C; Dreyfus R
    Soft Matter; 2018 Aug; 14(34):6994-7002. PubMed ID: 30095846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.
    Badetti M; Fall A; Chevoir F; Roux JN
    Eur Phys J E Soft Matter; 2018 May; 41(5):68. PubMed ID: 29802504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluidization of wet granulates under shear.
    Rahbari SH; Vollmer J; Herminghaus S; Brinkmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061305. PubMed ID: 21230670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling behavior of the tensile strength of viscocohesive granular aggregates.
    Vo TT
    Phys Rev E; 2021 Apr; 103(4-1):042902. PubMed ID: 34005866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary Forces between Concave Gripper and Spherical Particle for Micro-Objects Gripping.
    Fan Z; Liu Z; Huang C; Zhang W; Lv Z; Wang L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rupture work of pendular bridges.
    de Boer PC; de Boer MP
    Langmuir; 2008 Jan; 24(1):160-9. PubMed ID: 18041851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Evolution and Rupture of Pendular Liquid Bridges in the Presence of Large Wetting Hysteresis.
    Pepin X; Rossetti D; Iveson SM; Simons SJ
    J Colloid Interface Sci; 2000 Dec; 232(2):289-297. PubMed ID: 11097763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.