These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38838154)

  • 1. Ultranarrow-bandgap small-molecule acceptor enables sensitive SWIR detection and dynamic upconversion imaging.
    Chen Y; Zheng Y; Wang J; Zhao X; Liu G; Lin Y; Yang Y; Wang L; Tang Z; Wang Y; Fang Y; Zhang W; Zhu X
    Sci Adv; 2024 Jun; 10(23):eadm9631. PubMed ID: 38838154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors.
    Wu Z; Zhai Y; Kim H; Azoulay JD; Ng TN
    Acc Chem Res; 2018 Dec; 51(12):3144-3153. PubMed ID: 30520307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive Organic Photodetectors With Spectral Response up to 1.3 µm Using a Quinoidal Molecular Semiconductor.
    Yin B; Zhou X; Li Y; Hu G; Wei W; Yang M; Jeong S; Deng W; Wu B; Cao Y; Huang B; Pan L; Yang X; Fu Z; Fang Y; Shen L; Yang C; Wu H; Lan L; Huang F; Cao Y; Duan C
    Adv Mater; 2024 May; 36(19):e2310811. PubMed ID: 38358297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Performance Solution-Processed Organic Photodetector for Near-Infrared Sensing.
    Huang J; Lee J; Vollbrecht J; Brus VV; Dixon AL; Cao DX; Zhu Z; Du Z; Wang H; Cho K; Bazan GC; Nguyen TQ
    Adv Mater; 2020 Jan; 32(1):e1906027. PubMed ID: 31714629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive photodetection below silicon bandgap using quinoid-capped organic semiconductors.
    Li T; Hu G; Tao L; Jiang J; Xin J; Li Y; Ma W; Shen L; Fang Y; Lin Y
    Sci Adv; 2023 Mar; 9(13):eadf6152. PubMed ID: 36989368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SWIR Photodetection and Visualization Realized by Incorporating an Organic SWIR Sensitive Bulk Heterojunction.
    Li N; Lan Z; Lau YS; Xie J; Zhao D; Zhu F
    Adv Sci (Weinh); 2020 Jul; 7(14):2000444. PubMed ID: 32714755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shortwave Infrared Organic Photodiodes Realized by Polaron Engineering.
    Lee S; Lee J; Sim HR; So C; Chung DS
    Adv Mater; 2024 Feb; 36(8):e2310250. PubMed ID: 38016048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive Room Temperature Infrared Photodetection Using a Narrow Bandgap Conjugated Polymer.
    Liu CT; Vella J; Eedugurala N; Mahalingavelar P; Bills T; Salcido-Santacruz B; Sfeir MY; Azoulay JD
    Adv Sci (Weinh); 2023 Dec; 10(36):e2304077. PubMed ID: 37888896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced SWIR Light Detection in Organic Semiconductor Photodetectors through Up-Conversion of Mid-Gap Trap States.
    Zeiske S; Zarrabi N; Sandberg OJ; Gielen S; Maes W; Meredith P; Armin A
    Adv Mater; 2024 Jul; ():e2405061. PubMed ID: 39044625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shortwave infrared-absorbing squaraine dyes for all-organic optical upconversion devices.
    Strassel K; Hu WH; Osbild S; Padula D; Rentsch D; Yakunin S; Shynkarenko Y; Kovalenko M; Nüesch F; Hany R; Bauer M
    Sci Technol Adv Mater; 2021 Apr; 22(1):194-204. PubMed ID: 33907525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive liquid crystal optically addressed spatial light modulator for infrared-to-visible image up-conversion.
    Solodar A; Manis-Levy H; Sarusi G; Abdulhalim I
    Opt Lett; 2019 Mar; 44(5):1269-1272. PubMed ID: 30821765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-Broadband Ultraviolet-Visible Light-Short Wavelength Infrared InGaAs Focal Plane Arrays via n-InP Contact Layer Removal.
    Zhang J; Wang W; Ye H; Huang R; Liu C; Zhao W; Shi Y
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SWIR imaging using PbS QD photodiode array sensors.
    Chang S; Jin J; Kyhm J; Park TH; Ahn J; Park SL; Park SI; Hwang DK; Choi SS; Seong TY; Song JD; Hwang GW
    Opt Express; 2022 Jun; 30(12):20659-20665. PubMed ID: 36224805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-Dependent Detectivity of Near-Infrared Organic Bulk Heterojunction Photodiodes.
    Wu Z; Yao W; London AE; Azoulay JD; Ng TN
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1654-1660. PubMed ID: 27989105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Sensitivity Visible-Near Infrared Organic Photodetectors Based on Non-Fullerene Acceptors.
    Liu G; Li T; Zhan X; Wu H; Cao Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17769-17775. PubMed ID: 32200623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of CdS doping in improving SWIR photovoltaic and photoconductive responses in solution grown CdS/PbS heterojunctions.
    Manis-Levy H; Abutbul RE; Grosman A; Peled H; Golan Y; Ashkenasy N; Sa'Ar A; Shikler R; Sarusi G
    Nanotechnology; 2020 Apr; 31(25):255502. PubMed ID: 32160600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy-Metal-Free Flexible Hybrid Polymer-Nanocrystal Photodetectors Sensitive to 1.5 μm Wavelength.
    Xiang H; Hu Z; Billot L; Aigouy L; Zhang W; McCulloch I; Chen Z
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42571-42579. PubMed ID: 31625382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance and Flexible Shortwave Infrared Photodetectors Using Composites of Rare Earth-Doped Nanoparticles.
    Zhao X; Song L; Zhao R; Tan MC
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2344-2351. PubMed ID: 30574785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced sub-1 eV detection in organic photodetectors through tuning polymer energetics and microstructure.
    Jacoutot P; Scaccabarozzi AD; Nodari D; Panidi J; Qiao Z; Schiza A; Nega AD; Dimitrakopoulou-Strauss A; Gregoriou VG; Heeney M; Chochos CL; Bakulin AA; Gasparini N
    Sci Adv; 2023 Jun; 9(23):eadh2694. PubMed ID: 37285428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-Wave Infrared Colloidal QD Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers.
    Deng YH; Pang C; Kheradmand E; Leemans J; Bai J; Minjauw M; Liu J; Molkens K; Beeckman J; Detavernier C; Geiregat P; Van Thourhout D; Hens Z
    Adv Mater; 2024 Jul; 36(28):e2402002. PubMed ID: 38657973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.