These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38838431)
1. Retrieval of subsurface dissolved oxygen from surface oceanic parameters based on machine learning. Ping B; Meng Y; Su F; Xue C; Li Z Mar Environ Res; 2024 Jul; 199():106578. PubMed ID: 38838431 [TBL] [Abstract][Full Text] [Related]
2. Satellite-Based Global Sea Surface Oxygen Mapping and Interpretation with Spatiotemporal Machine Learning. Shao J; Huang S; Chen Y; Qi J; Wang Y; Wu S; Liu R; Du Z Environ Sci Technol; 2024 Jan; 58(1):498-509. PubMed ID: 38103020 [TBL] [Abstract][Full Text] [Related]
3. Change in water column total chlorophyll-a in the Mediterranean revealed by satellite observation. Li X; Zheng H; Mao Z; Du P; Zhang W Sci Total Environ; 2024 Oct; 945():174076. PubMed ID: 38908583 [TBL] [Abstract][Full Text] [Related]
4. Tropical instability wave modulation of chlorophyll-a in the Equatorial Pacific. Shi W; Wang M Sci Rep; 2021 Nov; 11(1):22517. PubMed ID: 34795331 [TBL] [Abstract][Full Text] [Related]
5. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning. Kolluru S; Tiwari SP Sci Total Environ; 2022 Oct; 844():157191. PubMed ID: 35810889 [TBL] [Abstract][Full Text] [Related]
6. MODIS Derived Sea Surface Salinity, Temperature, and Chlorophyll-a Data for Potential Fish Zone Mapping: West Red Sea Coastal Areas, Saudi Arabia. Daqamseh ST; Al-Fugara A; Pradhan B; Al-Oraiqat A; Habib M Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31058844 [TBL] [Abstract][Full Text] [Related]
7. Machine learning predictions of chlorophyll-a in the Han river basin, Korea. Kim KM; Ahn JH J Environ Manage; 2022 Sep; 318():115636. PubMed ID: 35777152 [TBL] [Abstract][Full Text] [Related]
8. Spatio-temporal variability of physico-chemical variables, chlorophyll a, and primary productivity in the northern Arabian Sea along India coast. Vase VK; Dash G; Sreenath KR; Temkar G; Shailendra R; Mohammed Koya K; Divu D; Dash S; Pradhan RK; Sukhdhane KS; Jayasankar J Environ Monit Assess; 2018 Feb; 190(3):148. PubMed ID: 29455262 [TBL] [Abstract][Full Text] [Related]
9. Estimation of chromophoric dissolved organic matter and its controlling factors in Beaufort Sea using mixture density network and Sentinel-3 data. Huang J; Chen J; Wu M; Gong L; Zhang X Sci Total Environ; 2022 Nov; 849():157677. PubMed ID: 35926633 [TBL] [Abstract][Full Text] [Related]
10. Daily impact of the simultaneous passage of binary typhoons on sea surface chlorophyll-a concentration dynamics in the Northwestern Pacific. Xing M; Zhang J; Jiang L; Wang X; Men Y; Seka AM; Yao F Sci Total Environ; 2024 Apr; 921():171166. PubMed ID: 38401738 [TBL] [Abstract][Full Text] [Related]
11. Data reconstruction of daily MODIS chlorophyll-a concentration and spatio-temporal variations in the Northwestern Pacific. Xing M; Yao F; Zhang J; Meng X; Jiang L; Bao Y Sci Total Environ; 2022 Oct; 843():156981. PubMed ID: 35764151 [TBL] [Abstract][Full Text] [Related]
12. Decline in global oceanic oxygen content during the past five decades. Schmidtko S; Stramma L; Visbeck M Nature; 2017 Feb; 542(7641):335-339. PubMed ID: 28202958 [TBL] [Abstract][Full Text] [Related]
13. Influence of environmental factors on macrofoulant assemblages on moored buoys in the eastern Arabian Sea. Martin MV; Venkatesan R; Beyline M; Limna Mol VP; Divya L PLoS One; 2020; 15(1):e0223560. PubMed ID: 31999725 [TBL] [Abstract][Full Text] [Related]
14. Estimation of the Mixed Layer Depth in the Indian Ocean from Surface Parameters: A Clustering-Neural Network Method. Gu C; Qi J; Zhao Y; Yin W; Zhu S Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898102 [TBL] [Abstract][Full Text] [Related]
15. Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll-a content: A case study in the Tri An Reservoir, Vietnam. Nguyen HQ; Ha NT; Nguyen-Ngoc L; Pham TL Water Environ Res; 2021 Dec; 93(12):2941-2957. PubMed ID: 34547152 [TBL] [Abstract][Full Text] [Related]
16. Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms. Tian S; Guo H; Xu W; Zhu X; Wang B; Zeng Q; Mai Y; Huang JJ Environ Sci Pollut Res Int; 2023 Feb; 30(7):18617-18630. PubMed ID: 36217046 [TBL] [Abstract][Full Text] [Related]
17. Time series (2003-15) analysis of selected physicochemical parameters in Indian Ocean: Cumulative impacts prediction on coral bleaching using machine learning. Panja AK; Jaiswal S; Haldar S Sci Total Environ; 2024 Jul; 933():173002. PubMed ID: 38710398 [TBL] [Abstract][Full Text] [Related]
18. Hybrid WT-CNN-GRU-based model for the estimation of reservoir water quality variables considering spatio-temporal features. Zamani MG; Nikoo MR; Al-Rawas G; Nazari R; Rastad D; Gandomi AH J Environ Manage; 2024 May; 358():120756. PubMed ID: 38599080 [TBL] [Abstract][Full Text] [Related]
19. Robust clustering-based hybrid technique enabling reliable reservoir water quality prediction with uncertainty quantification and spatial analysis. Fooladi M; Nikoo MR; Mirghafari R; Madramootoo CA; Al-Rawas G; Nazari R J Environ Manage; 2024 Jun; 362():121259. PubMed ID: 38830281 [TBL] [Abstract][Full Text] [Related]
20. Ocean water quality monitoring using remote sensing techniques: A review. Mohseni F; Saba F; Mirmazloumi SM; Amani M; Mokhtarzade M; Jamali S; Mahdavi S Mar Environ Res; 2022 Sep; 180():105701. PubMed ID: 35939895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]