These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38838494)
1. Chlorella vulgaris-mediated bioremediation of food and beverage wastewater from industries in Mexico: Results and perspectives towards sustainability and circular economy. Najar-Almanzor CE; Velasco-Iglesias KD; Solis-Bañuelos M; González-Díaz RL; Guerrero-Higareda S; Fuentes-Carrasco OJ; García-Cayuela T; Carrillo-Nieves D Sci Total Environ; 2024 Aug; 940():173753. PubMed ID: 38838494 [TBL] [Abstract][Full Text] [Related]
2. Microalgae-assisted green bioremediation of food-processing wastewater: A sustainable approach toward a circular economy concept. Najar-Almanzor CE; Velasco-Iglesias KD; Nunez-Ramos R; Uribe-Velázquez T; Solis-Bañuelos M; Fuentes-Carrasco OJ; Chairez I; García-Cayuela T; Carrillo-Nieves D J Environ Manage; 2023 Nov; 345():118774. PubMed ID: 37619389 [TBL] [Abstract][Full Text] [Related]
3. Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. López-Pacheco IY; Carrillo-Nieves D; Salinas-Salazar C; Silva-Núñez A; Arévalo-Gallegos A; Barceló D; Afewerki S; Iqbal HMN; Parra-Saldívar R Sci Total Environ; 2019 Aug; 676():356-367. PubMed ID: 31048166 [TBL] [Abstract][Full Text] [Related]
5. Corn industrial wastewater (nejayote): a promising substrate in Mexico for methane production in a coupled system (APCR-UASB). España-Gamboa E; Domínguez-Maldonado JA; Tapia-Tussell R; Chale-Canul JS; Alzate-Gaviria L Environ Sci Pollut Res Int; 2018 Jan; 25(1):712-722. PubMed ID: 29063393 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of nutrients removal (NO Gómez-Guzmán A; Jiménez-Magaña S; Guerra-Rentería AS; Gómez-Hermosillo C; Parra-Rodríguez FJ; Velázquez S; Aguilar-Uscanga BR; Solis-Pacheco J; González-Reynoso O Water Sci Technol; 2017 Jul; 76(1-2):49-56. PubMed ID: 28708609 [TBL] [Abstract][Full Text] [Related]
7. Removal of polycyclic aromatic hydrocarbons (PAHs) from produced water using the microalgae Chlorella vulgaris cultivated in mixotrophic and heterotrophic conditions. Ñañez KB; Rios Ramirez KD; Cordeiro de Oliveira OM; Reyes CY; Andrade Moreira ÍT Chemosphere; 2024 May; 356():141931. PubMed ID: 38614391 [TBL] [Abstract][Full Text] [Related]
8. Use of Chlorella vulgaris for bioremediation of textile wastewater. Lim SL; Chu WL; Phang SM Bioresour Technol; 2010 Oct; 101(19):7314-22. PubMed ID: 20547057 [TBL] [Abstract][Full Text] [Related]
9. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Wang Y; Guo W; Yen HW; Ho SH; Lo YC; Cheng CL; Ren N; Chang JS Bioresour Technol; 2015 Dec; 198():619-25. PubMed ID: 26433786 [TBL] [Abstract][Full Text] [Related]
10. Assessment of a microalgae pond for post-treatment of the effluent from an anaerobic fixed bed reactor treating distillery wastewater. Travieso L; Benítez F; Sánchez E; Borja R; León M; Raposo F; Rincón B Environ Technol; 2008 Sep; 29(9):985-92. PubMed ID: 18844125 [TBL] [Abstract][Full Text] [Related]
11. Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris. Szwarc K; Szwarc D; Zieliński M Environ Sci Pollut Res Int; 2020 Jan; 27(1):111-117. PubMed ID: 31037532 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from industrial wastewaters. Moreno-Andrade I; Moreno G; Kumar G; Buitrón G Water Sci Technol; 2015; 71(1):105-10. PubMed ID: 25607676 [TBL] [Abstract][Full Text] [Related]
13. Microalgae based wastewater treatment: a shifting paradigm for the developing nations. Moondra N; Jariwala ND; Christian RA Int J Phytoremediation; 2021; 23(7):765-771. PubMed ID: 33327739 [TBL] [Abstract][Full Text] [Related]
14. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Shen QH; Gong YP; Fang WZ; Bi ZC; Cheng LH; Xu XH; Chen HL Bioresour Technol; 2015 Oct; 193():68-75. PubMed ID: 26117237 [TBL] [Abstract][Full Text] [Related]
15. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511 [TBL] [Abstract][Full Text] [Related]
16. Treatment of tequila distillation volatile residues by electrochemical oxidation using titanium electrodes. Martínez-Orozco E; Nápoles-Armenta J; Gortáres-Moroyoqui P; Santiago-Olivares N; Ulloa-Mercado RG; De la Mora-Orozco C; Leyva-Soto LA; Alvarez-Valencia LH; Meza-Escalante ER; Rentería-Mexia AM Environ Technol; 2024 Jun; 45(15):3048-3061. PubMed ID: 37102406 [No Abstract] [Full Text] [Related]
17. Evaluation of Ficus benjamina wood chip-based fungal biofiltration for the treatment of Tequila vinasses. Marco Antonio GZ; Angélica Julieta AR; Esperanza RC; Gerardo B; Gerardo DG; Edson Baltazar EA Water Sci Technol; 2018 Mar; 77(5-6):1449-1459. PubMed ID: 29528332 [TBL] [Abstract][Full Text] [Related]
18. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters. He PJ; Mao B; Lü F; Shao LM; Lee DJ; Chang JS Bioresour Technol; 2013 Oct; 146():562-568. PubMed ID: 23973976 [TBL] [Abstract][Full Text] [Related]
19. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. Hu X; Zhou J; Liu G; Gui B J Environ Sci (China); 2016 Aug; 46():83-91. PubMed ID: 27521939 [TBL] [Abstract][Full Text] [Related]
20. Strategies for decolorization and detoxification of pulp and paper mill effluent. Garg SK; Tripathi M Rev Environ Contam Toxicol; 2011; 212():113-36. PubMed ID: 21432056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]