These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38838497)

  • 1. Bridging nonlinear dynamics and physiology: Implications for CPGs and biomimetic robotics. Reply to comments on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots".
    Kastalskiy IA; Gordleeva SY; Hramov AE; Kazantsev VB
    Phys Life Rev; 2024 May; 50():32-34. PubMed ID: 38838497
    [No Abstract]   [Full Text] [Related]  

  • 2. Delayed feedback control of synchronization patterns: Comment on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by S.Yu. Gordleeva et al.
    Schöll E
    Phys Life Rev; 2024 Jul; 49():112-114. PubMed ID: 38574585
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of movement of underwater swimmers: Animals, simulated animates and swimming robots.
    Gordleeva SY; Kastalskiy IA; Tsybina YA; Ermolaeva AV; Hramov AE; Kazantsev VB
    Phys Life Rev; 2023 Dec; 47():211-244. PubMed ID: 38072505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement control mechanism of underwater swimmers via resonance entrainment of central pattern generators Comment on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by Gordleeva et al.
    Semenov DM; Fradkov AL
    Phys Life Rev; 2024 Jul; 49():95-96. PubMed ID: 38564908
    [No Abstract]   [Full Text] [Related]  

  • 5. From animal biology to simulated models and back: Comment on "control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by Gordleeva et al.
    Zhao J; Xue L; Mu Y; Ji P
    Phys Life Rev; 2024 Jul; 49():17-18. PubMed ID: 38479308
    [No Abstract]   [Full Text] [Related]  

  • 6. Concept of swarming and synchrony in aquatic animal movements: Comment on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by Gordleeva et al.
    Sar GK; Ghosh D
    Phys Life Rev; 2024 Jul; 49():1-3. PubMed ID: 38442457
    [No Abstract]   [Full Text] [Related]  

  • 7. Rotating waves and multistability in locomotion models: Comment on "Control of movement of underwater swimmers: Animals, simulated animates and swimming robots" by S.Yu. Gordleeva, I.A. Kastalskiy, Yu.A. Tsybina, A.V. Ermolaeva, A.E. Hramov, and V.B. Kazantsev.
    Pisarchik AN
    Phys Life Rev; 2024 Jul; 49():4-6. PubMed ID: 38442458
    [No Abstract]   [Full Text] [Related]  

  • 8. Biomimetic soft micro-swimmers: from actuation mechanisms to applications.
    Fu S; Wei F; Yin C; Yao L; Wang Y
    Biomed Microdevices; 2021 Jan; 23(1):6. PubMed ID: 33420838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation.
    Zhang C; Wang J; Wang W; Xi N; Wang Y; Liu L
    Bioinspir Biomim; 2016 Aug; 11(5):056006. PubMed ID: 27545346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Underwater robot coordination using a bio-inspired electrocommunication system.
    Zhou Y; Wang W; Zhang H; Zheng X; Li L; Wang C; Xu G; Xie G
    Bioinspir Biomim; 2022 Jul; 17(5):. PubMed ID: 35767978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Soft Underwater Robot Inspired by the Red Muscle and Tendon Structure of Fish.
    Aragaki D; Nishimura T; Sato R; Ming A
    Biomimetics (Basel); 2023 Mar; 8(2):. PubMed ID: 37092385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers.
    Rajendran SK; Zhang F
    Front Robot AI; 2021; 8():809427. PubMed ID: 35309723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming.
    White CH; Lauder GV; Bart-Smith H
    Bioinspir Biomim; 2021 Mar; 16(2):. PubMed ID: 32927442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central pattern generators evolved for real-time adaptation to rhythmic stimuli.
    Szorkovszky A; Veenstra F; Glette K
    Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37339660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bio-inspired electrocommunication system for small underwater robots.
    Wang W; Liu J; Xie G; Wen L; Zhang J
    Bioinspir Biomim; 2017 Mar; 12(3):036002. PubMed ID: 28220758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable stiffness in fish robotics: mechanisms and advantages.
    Quinn D; Lauder G
    Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34814125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost of Transport of Undulating Fin Propulsion.
    Vercruyssen TGA; Henrion S; Müller UK; van Leeuwen JL; van der Helm FCT
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LM-Jelly: Liquid Metal Enabled Biomimetic Robotic Jellyfish.
    Ye J; Yao YC; Gao JY; Chen S; Zhang P; Sheng L; Liu J
    Soft Robot; 2022 Dec; 9(6):1098-1107. PubMed ID: 35486839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.