These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38838497)

  • 41. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonlinear Parametric Excitation Effect Induces Stability Transitions in Swimming Direction of Flexible Superparamagnetic Microswimmers.
    Harduf Y; Jin D; Or Y; Zhang L
    Soft Robot; 2018 Aug; 5(4):389-398. PubMed ID: 29620965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots.
    Renda F; Giorgio-Serchi F; Boyer F; Laschi C
    Bioinspir Biomim; 2015 Sep; 10(5):055005. PubMed ID: 26414068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Confined swimming of bio-inspired microrobots in rectangular channels.
    Temel FZ; Yesilyurt S
    Bioinspir Biomim; 2015 Feb; 10(1):016015. PubMed ID: 25642947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Turtle mimetic soft robot with two swimming gaits.
    Song SH; Kim MS; Rodrigue H; Lee JY; Shim JE; Kim MC; Chu WS; Ahn SH
    Bioinspir Biomim; 2016 May; 11(3):036010. PubMed ID: 27145061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design, Modeling, and Visual Learning-Based Control of Soft Robotic Fish Driven by Super-Coiled Polymers.
    Rajendran SK; Zhang F
    Front Robot AI; 2021; 8():809427. PubMed ID: 35309723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fish robotics: multi-fin propulsion and the coupling of fin phase, spacing, and compliance.
    Mignano AP; Kadapa S; Drago AC; Lauder GV; Kwatny HG; Tangorra JL
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38211345
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Underwater legged robotics: review and perspectives.
    Picardi G; Astolfi A; Chatzievangelou D; Aguzzi J; Calisti M
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 36863018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A biomimetic framework for coordinating and controlling whole body movements in humanoid robots.
    Morasso P; Rea F; Mohan V
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5307-10. PubMed ID: 24110934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monolithic Three-Dimensional Functionally Graded Hydrogels for Bioinspired Soft Robots Fabrication.
    Piazzoni M; Piccoli E; Migliorini L; Milana E; Iberite F; Vannozzi L; Ricotti L; Gerges I; Milani P; Marano C; Lenardi C; Santaniello T
    Soft Robot; 2022 Apr; 9(2):224-232. PubMed ID: 33651966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of a muscle-like soft actuator via a bioinspired approach.
    Cao J; Liang W; Zhu J; Ren Q
    Bioinspir Biomim; 2018 Oct; 13(6):066005. PubMed ID: 30221628
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioinspiration and biomimetics in marine robotics: a review on current applications and future trends.
    Prakash A; Nair AR; Arunav H; P R R; Akhil VM; Tawk C; Shankar KV
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38467071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of a Carangiform Swimming Robot through a Multiphysics Simulation Environment.
    Costa D; Palmieri G; Palpacelli MC; Scaradozzi D; Callegari M
    Biomimetics (Basel); 2020 Sep; 5(4):. PubMed ID: 33007974
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational modeling of swimming in marine invertebrates with implications for soft swimming robots.
    Zhou Z; Mittal R
    Bioinspir Biomim; 2020 Jun; 15(4):046010. PubMed ID: 32320957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Underwater robot coordination using a bio-inspired electrocommunication system.
    Zhou Y; Wang W; Zhang H; Zheng X; Li L; Wang C; Xu G; Xie G
    Bioinspir Biomim; 2022 Jul; 17(5):. PubMed ID: 35767978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomimetic vibrissal sensing for robots.
    Pearson MJ; Mitchinson B; Sullivan JC; Pipe AG; Prescott TJ
    Philos Trans R Soc Lond B Biol Sci; 2011 Nov; 366(1581):3085-96. PubMed ID: 21969690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-organized coordinated motion in groups of physically connected robots.
    Baldassarre G; Trianni V; Bonani M; Mondada F; Dorigo M; Nolfi S
    IEEE Trans Syst Man Cybern B Cybern; 2007 Feb; 37(1):224-39. PubMed ID: 17278574
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent progress on underwater soft robots: adhesion, grabbing, actuating, and sensing.
    Zhang Y; Kong D; Shi Y; Cai M; Yu Q; Li S; Wang K; Liu C
    Front Bioeng Biotechnol; 2023; 11():1196922. PubMed ID: 37614630
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.