These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38838664)

  • 1. A cross-scenario and cross-subject domain adaptation method for driving fatigue detection.
    Luo Y; Liu W; Li H; Lu Y; Lu BL
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38838664
    [No Abstract]   [Full Text] [Related]  

  • 2. InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection.
    Zeng H; Zhang J; Zakaria W; Babiloni F; Gianluca B; Li X; Kong W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DP-MP: a novel cross-subject fatigue detection framework with DANN-based prototypical representation and mix-up pairwise learning.
    He X; Li H; Yu P; Wu H; Chen B
    J Neural Eng; 2024 Jul; ():. PubMed ID: 38986468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward practical driving fatigue detection using three frontal EEG channels: a proof-of-concept study.
    Liu X; Li G; Wang S; Wan F; Sun Y; Wang H; Bezerianos A; Li C; Sun Y
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33780920
    [No Abstract]   [Full Text] [Related]  

  • 5. An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction.
    Zeng H; Li X; Borghini G; Zhao Y; Aricò P; Di Flumeri G; Sciaraffa N; Zakaria W; Kong W; Babiloni F
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation.
    Gao Z; Wang X; Yang Y; Mu C; Cai Q; Dang W; Zuo S
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2755-2763. PubMed ID: 30640634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An iterative cross-subject negative-unlabeled learning algorithm for quantifying passive fatigue.
    Foong R; Ang KK; Zhang Z; Quek C
    J Neural Eng; 2019 Aug; 16(5):056013. PubMed ID: 31141797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AGL-Net: An Efficient Neural Network for EEG-Based Driver Fatigue Detection.
    Fang W; Tang L; Pan J
    J Integr Neurosci; 2023 Oct; 22(6):146. PubMed ID: 38176922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN.
    Chen K; Liu Z; Li Z; Liu Q; Ai Q; Ma L
    Biomed Tech (Berl); 2023 Jun; 68(3):317-327. PubMed ID: 36797837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Attentive Channel-Connectivity Capsule Network for EEG-Based Driving Fatigue Detection.
    Chen C; Ji Z; Sun Y; Bezerianos A; Thakor N; Wang H
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3152-3162. PubMed ID: 37494165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network.
    Wang F; Chen D; Yao W; Fu R
    J Neurosci Methods; 2023 Dec; 400():109983. PubMed ID: 37838152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CSF-GTNet: A Novel Multi-Dimensional Feature Fusion Network Based on Convnext-GeLU- BiLSTM for EEG-Signals-Enabled Fatigue Driving Detection.
    Gao D; Li P; Wang M; Liang Y; Liu S; Zhou J; Wang L; Zhang Y
    IEEE J Biomed Health Inform; 2024 May; 28(5):2558-2568. PubMed ID: 37022236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature extraction of EEG signals based on functional data analysis and its application to recognition of driver fatigue state.
    Shangguan P; Qiu T; Liu T; Zou S; Liu Z; Zhang S
    Physiol Meas; 2021 Jan; 41(12):125004. PubMed ID: 33126235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system.
    Min J; Wang P; Hu J
    PLoS One; 2017; 12(12):e0188756. PubMed ID: 29220351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SFT-Net: A Network for Detecting Fatigue From EEG Signals by Combining 4D Feature Flow and Attention Mechanism.
    Gao D; Wang K; Wang M; Zhou J; Zhang Y
    IEEE J Biomed Health Inform; 2024 Aug; 28(8):4444-4455. PubMed ID: 37310832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An EEG monitoring method based on compressed sensing for fatigue driving.
    Xin Z
    Comput Methods Biomech Biomed Engin; 2024 Jul; 27(9):1206-1213. PubMed ID: 38293723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time EEG-based detection of fatigue driving danger for accident prediction.
    Wang H; Zhang C; Shi T; Wang F; Ma S
    Int J Neural Syst; 2015 Mar; 25(2):1550002. PubMed ID: 25541095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A regression method for EEG-based cross-dataset fatigue detection.
    Yuan D; Yue J; Xiong X; Jiang Y; Zan P; Li C
    Front Physiol; 2023; 14():1196919. PubMed ID: 37324376
    [No Abstract]   [Full Text] [Related]  

  • 20. Classifying Driving Fatigue by Using EEG Signals.
    Zeng C; Mu Z; Wang Q
    Comput Intell Neurosci; 2022; 2022():1885677. PubMed ID: 35371255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.