These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38838766)
1. Probabilistic material flow analysis of released nano titanium dioxide in Mexico. Ortiz-Galvez LM; Caballero-Guzman A; Lopes C; Alfaro-Moreno E NanoImpact; 2024 Jul; 35():100516. PubMed ID: 38838766 [TBL] [Abstract][Full Text] [Related]
2. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Adam V; Caballero-Guzman A; Nowack B Environ Pollut; 2018 Dec; 243(Pt A):17-27. PubMed ID: 30170204 [TBL] [Abstract][Full Text] [Related]
3. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. Rajkovic S; Bornhöft NA; van der Weijden R; Nowack B; Adam V Waste Manag; 2020 Jul; 113():118-131. PubMed ID: 32531660 [TBL] [Abstract][Full Text] [Related]
4. Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries. Adam V; Wu Q; Nowack B NanoImpact; 2021 Apr; 22():100312. PubMed ID: 35559969 [TBL] [Abstract][Full Text] [Related]
5. Size-Specific, Dynamic, Probabilistic Material Flow Analysis of Titanium Dioxide Releases into the Environment. Zheng Y; Nowack B Environ Sci Technol; 2021 Feb; 55(4):2392-2402. PubMed ID: 33541069 [TBL] [Abstract][Full Text] [Related]
6. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538 [TBL] [Abstract][Full Text] [Related]
7. Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Hincapié I; Caballero-Guzman A; Hiltbrunner D; Nowack B Waste Manag; 2015 Sep; 43():398-406. PubMed ID: 26164852 [TBL] [Abstract][Full Text] [Related]
8. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO Hong H; Adam V; Nowack B Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135 [TBL] [Abstract][Full Text] [Related]
9. Leaching potential of nano-scale titanium dioxide in fresh municipal solid waste. Dulger M; Sakallioglu T; Temizel I; Demirel B; Copty NK; Onay TT; Uyguner-Demirel CS; Karanfil T Chemosphere; 2016 Feb; 144():1567-72. PubMed ID: 26517383 [TBL] [Abstract][Full Text] [Related]
10. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Gottschalk F; Kost E; Nowack B Environ Toxicol Chem; 2013 Jun; 32(6):1278-87. PubMed ID: 23418073 [TBL] [Abstract][Full Text] [Related]
11. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Sun TY; Bornhöft NA; Hungerbühler K; Nowack B Environ Sci Technol; 2016 May; 50(9):4701-11. PubMed ID: 27043743 [TBL] [Abstract][Full Text] [Related]
12. Dynamic probabilistic material flow analysis of nano-SiO Wang Y; Nowack B Environ Pollut; 2018 Apr; 235():589-601. PubMed ID: 29331892 [TBL] [Abstract][Full Text] [Related]
13. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
14. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials. Sun TY; Mitrano DM; Bornhöft NA; Scheringer M; Hungerbühler K; Nowack B Environ Sci Technol; 2017 Mar; 51(5):2854-2863. PubMed ID: 28157288 [TBL] [Abstract][Full Text] [Related]
15. The release of engineered nanomaterials to the environment. Gottschalk F; Nowack B J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066 [TBL] [Abstract][Full Text] [Related]
16. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Sci Technol; 2009 Dec; 43(24):9216-22. PubMed ID: 20000512 [TBL] [Abstract][Full Text] [Related]
17. Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Som C; Wick P; Krug H; Nowack B Environ Int; 2011 Aug; 37(6):1131-42. PubMed ID: 21397331 [TBL] [Abstract][Full Text] [Related]
18. Semi-quantitative analysis of solid waste flows from nano-enabled consumer products in Europe, Denmark and the United Kingdom - Abundance, distribution and management. Heggelund L; Hansen SF; Astrup TF; Boldrin A Waste Manag; 2016 Oct; 56():584-92. PubMed ID: 27311351 [TBL] [Abstract][Full Text] [Related]
19. Modeling the fate and end-of-life phase of engineered nanomaterials in the Japanese construction sector. Suzuki S; Part F; Matsufuji Y; Huber-Humer M Waste Manag; 2018 Feb; 72():389-398. PubMed ID: 29196056 [TBL] [Abstract][Full Text] [Related]
20. Environmental risk assessment of engineered nano-SiO Wang Y; Nowack B Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]