BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38838908)

  • 1. The anisotropic and region-dependent mechanical response of wrap-around tendons under tensile, compressive and combined multiaxial loads.
    Böl M; Leichsenring K; Kohn S; Ehret AE
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38838908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different regions of bovine deep digital flexor tendon exhibit distinct elastic, but not viscous, mechanical properties under both compression and shear loading.
    Fang F; Sawhney AS; Lake SP
    J Biomech; 2014 Sep; 47(12):2869-77. PubMed ID: 25113805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulation ex vivo within a wrap-around tendon.
    Li KW; Lindsey DP; Wagner DR; Giori NJ; Schurman DJ; Goodman SB; Smith RL; Carter DR; Beaupre GS
    Tissue Eng; 2006 Sep; 12(9):2611-8. PubMed ID: 16995794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between compressive loading and ECM changes in tendons.
    Docking S; Samiric T; Scase E; Purdam C; Cook J
    Muscles Ligaments Tendons J; 2013 Jan; 3(1):7-11. PubMed ID: 23885340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anisotropic compressive mechanical properties of the rabbit patellar tendon.
    Williams LN; Elder SH; Bouvard JL; Horstemeyer MF
    Biorheology; 2008; 45(5):577-86. PubMed ID: 19065006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy.
    Lake SP; Miller KS; Elliott DM; Soslowsky LJ
    J Biomech; 2010 Mar; 43(4):727-32. PubMed ID: 19900677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of transverse poroelastic mechanics of tendon using osmotic loading and biphasic mixture finite element modeling.
    Safa BN; Bloom ET; Lee AH; Santare MH; Elliott DM
    J Biomech; 2020 Aug; 109():109892. PubMed ID: 32807341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon.
    Lynch HA; Johannessen W; Wu JP; Jawa A; Elliott DM
    J Biomech Eng; 2003 Oct; 125(5):726-31. PubMed ID: 14618932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalized loading conditions for homogenized finite element analysis of the distal sections of the radius.
    Schenk D; Zysset P
    Biomech Model Mechanobiol; 2023 Apr; 22(2):453-466. PubMed ID: 36477423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression.
    Chahine NO; Wang CC; Hung CT; Ateshian GA
    J Biomech; 2004 Aug; 37(8):1251-61. PubMed ID: 15212931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation.
    Mohammadkhah M; Murphy P; Simms CK
    J Mech Behav Biomed Mater; 2016 Sep; 62():468-480. PubMed ID: 27281164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrocartilage in tendons and ligaments--an adaptation to compressive load.
    Benjamin M; Ralphs JR
    J Anat; 1998 Nov; 193 ( Pt 4)(Pt 4):481-94. PubMed ID: 10029181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation.
    Huang CY; Stankiewicz A; Ateshian GA; Mow VC
    J Biomech; 2005 Apr; 38(4):799-809. PubMed ID: 15713301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of native and decellularised porcine tendon under tension and compression: A closer look at glycosaminoglycan contribution to tendon mechanics.
    Solis-Cordova J; Edwards JH; Fermor HL; Riches P; Brockett CL; Herbert A
    J Mech Behav Biomed Mater; 2023 Mar; 139():105671. PubMed ID: 36682172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia.
    Wren TA; Beaupré GS; Carter DR
    J Rehabil Res Dev; 2000; 37(2):135-43. PubMed ID: 10850819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomechanical study of clamping technique on patellar tendon surface strain and material properties using digital image correlation.
    Firminger CR; Edwards WB
    J Mech Behav Biomed Mater; 2021 Jan; 113():104156. PubMed ID: 33125955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro.
    Evanko SP; Vogel KG
    Arch Biochem Biophys; 1993 Nov; 307(1):153-64. PubMed ID: 7694546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transverse Compression of Tendons.
    Salisbury ST; Buckley CP; Zavatsky AB
    J Biomech Eng; 2016 Apr; 138(4):041002. PubMed ID: 26833218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in ADC caused by tensile loading of rabbit achilles tendon: evidence for water transport.
    Han S; Gemmell SJ; Helmer KG; Grigg P; Wellen JW; Hoffman AH; Sotak CH
    J Magn Reson; 2000 Jun; 144(2):217-27. PubMed ID: 10828190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.