These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 38839062)
1. Inhibiting the Jahn-Teller Effect of Manganese Hexacyanoferrate via Ni and Cu Codoping for Advanced Sodium-Ion Batteries. Luo Y; Shen J; Yao Y; Dai J; Ling F; Li L; Jiang Y; Wu X; Rui X; Yu Y Adv Mater; 2024 Aug; 36(32):e2405458. PubMed ID: 38839062 [TBL] [Abstract][Full Text] [Related]
2. A Strategy to Mitigate Jahn Teller Effect of Mn-Rich NASICON Framework for Sodium-Ion Batteries. Ahsan MT; Ali Z; Qiu D; Biao Z; Wang JJ; Hou Y Small; 2024 Oct; 20(43):e2402275. PubMed ID: 39155432 [TBL] [Abstract][Full Text] [Related]
3. Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries. Li X; Shang Y; Yan D; Guo L; Huang S; Yang HY ACS Nano; 2022 Jan; 16(1):453-461. PubMed ID: 34978811 [TBL] [Abstract][Full Text] [Related]
4. Epitaxial Nickel Ferrocyanide Stabilizes Jahn-Teller Distortions of Manganese Ferrocyanide for Sodium-Ion Batteries. Gebert F; Cortie DL; Bouwer JC; Wang W; Yan Z; Dou SX; Chou SL Angew Chem Int Ed Engl; 2021 Aug; 60(34):18519-18526. PubMed ID: 34096153 [TBL] [Abstract][Full Text] [Related]
5. Ni-Doped Layered Manganese Oxide as a Stable Cathode for Potassium-Ion Batteries. Bai P; Jiang K; Zhang X; Xu J; Guo S; Zhou H ACS Appl Mater Interfaces; 2020 Mar; 12(9):10490-10495. PubMed ID: 32049481 [TBL] [Abstract][Full Text] [Related]
6. Optimizing Mn in Prussian blue analogs with double redox active sites to induce boosted Zn Ye L; Fu H; Cao R; Yang J J Colloid Interface Sci; 2024 Jun; 664():423-432. PubMed ID: 38484511 [TBL] [Abstract][Full Text] [Related]
7. Acid-assisted synthesis of core-shell Prussian blue cathode for sodium-ion batteries. Wang K; Yang M; Liu Q; Cao S; Wang Y; Hu T; Peng Z J Colloid Interface Sci; 2025 Jan; 678(Pt C):346-358. PubMed ID: 39298987 [TBL] [Abstract][Full Text] [Related]
8. Slow-Released Cationic Redox Activity Promoted Stable Anionic Redox and Suppressed Jahn-Teller Distortion in Layered Sodium Manganese Oxides. Zeng A; Jiao J; Zhang H; Zhao E; He T; Xu Z; Xiao X ACS Appl Mater Interfaces; 2024 Feb; 16(6):7119-7129. PubMed ID: 38295308 [TBL] [Abstract][Full Text] [Related]
9. Formation of CuMn Prussian Blue Analog Double-Shelled Nanoboxes Toward Long-Life Zn-ion Batteries. Zeng Y; Xu J; Wang Y; Li S; Luan D; Lou XWD Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212031. PubMed ID: 36177990 [TBL] [Abstract][Full Text] [Related]
10. Fe doping mechanism of Na Zhang H; Xiang Y; Liu B; Li G; Dun C; Huang H; Zou Q; Xiong L; Wu X J Colloid Interface Sci; 2024 May; 661():389-400. PubMed ID: 38306748 [TBL] [Abstract][Full Text] [Related]
11. Copper-Stabilized P'2-Type Layered Manganese Oxide Cathodes for High-Performance Sodium-Ion Batteries. Ling Y; Zhou J; Guo S; Fu H; Zhou Y; Fang G; Wang L; Lu B; Cao X; Liang S ACS Appl Mater Interfaces; 2021 Dec; 13(49):58665-58673. PubMed ID: 34855341 [TBL] [Abstract][Full Text] [Related]
12. Zn Doping Strategy to Suppress the Jahn-Teller Effect to Stabilize Mn-Based Layered Oxide Cathode toward High-Performance Potassium Ion Batteries. Quan J; Lin H; Li H Small; 2024 Oct; 20(40):e2403065. PubMed ID: 38845029 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method. Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684 [TBL] [Abstract][Full Text] [Related]
14. A new Mn-based layered cathode with enlarged interlayer spacing for potassium ion batteries. Zhao Z; Sun Y; Pan Y; Liu J; Zhou J; Ma M; Wu X; Shen X; Zhou J; Zhou P J Colloid Interface Sci; 2023 Dec; 652(Pt A):231-239. PubMed ID: 37595440 [TBL] [Abstract][Full Text] [Related]
15. Tailoring Anionic Redox Activity in a P2-Type Sodium Layered Oxide Cathode via Cu Substitution. Hu B; Qiu Q; Li C; Shen M; Hu B; Tong W; Wang K; Zhou Q; Zhang Y; He Z; Zhang T; Chen C ACS Appl Mater Interfaces; 2022 Jun; 14(25):28738-28747. PubMed ID: 35726835 [TBL] [Abstract][Full Text] [Related]
16. Zinc-Doping Strategy on P2-Type Mn-Based Layered Oxide Cathode for High-Performance Potassium-ion Batteries. Zheng Y; Li J; Ji S; Hui KS; Wang S; Xu H; Wang K; Dinh DA; Zha C; Shao Z; Hui KN Small; 2023 Sep; 19(39):e2302160. PubMed ID: 37162450 [TBL] [Abstract][Full Text] [Related]
17. High Capacity and Fast Kinetics Enabled by Metal-Doping in Prussian Blue Analogue Cathodes for Sodium-Ion Batteries. Yimtrakarn T; Lo YA; Kongcharoenkitkul J; Lee JC; Kaveevivitchai W Chem Asian J; 2024 Jul; 19(13):e202301145. PubMed ID: 38703395 [TBL] [Abstract][Full Text] [Related]
18. Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. Rehman R; Peng J; Yi H; Shen Y; Yin J; Li C; Fang C; Li Q; Han J RSC Adv; 2020 Jul; 10(45):27033-27041. PubMed ID: 35515809 [TBL] [Abstract][Full Text] [Related]
19. High-Voltage Potassium Hexacyanoferrate Cathode via High-Entropy and Potassium Incorporation for Stable Sodium-Ion Batteries. Dai J; Tan S; Wang L; Ling F; Duan F; Ma M; Shao Y; Rui X; Yao Y; Hu E; Wu X; Li C; Yu Y ACS Nano; 2023 Nov; 17(21):20949-20961. PubMed ID: 37906735 [TBL] [Abstract][Full Text] [Related]
20. Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries. Zhou A; Xu Z; Gao H; Xue L; Li J; Goodenough JB Small; 2019 Oct; 15(42):e1902420. PubMed ID: 31469502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]