BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38839238)

  • 1. Several secondary metabolite gene clusters in the genomes of ten Penicillium spp. raise the risk of multiple mycotoxin occurrence in chestnuts.
    Garello M; Piombo E; Buonsenso F; Prencipe S; Valente S; Meloni GR; Marcet-Houben M; Gabaldón T; Spadaro D
    Food Microbiol; 2024 Sep; 122():104532. PubMed ID: 38839238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Several species of Penicillium isolated from chestnut flour processing are pathogenic on fresh chestnuts and produce mycotoxins.
    Prencipe S; Siciliano I; Gatti C; Garibaldi A; Gullino ML; Botta R; Spadaro D
    Food Microbiol; 2018 Dec; 76():396-404. PubMed ID: 30166166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains.
    Kosalková K; Domínguez-Santos R; Coton M; Coton E; García-Estrada C; Liras P; Martín JF
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7601-12. PubMed ID: 25998659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HPLC-MS/MS Method for the Detection of Selected Toxic Metabolites Produced by
    Spadaro D; Meloni GR; Siciliano I; Prencipe S; Gullino ML
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32397224
    [No Abstract]   [Full Text] [Related]  

  • 5. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species.
    Nielsen JC; Grijseels S; Prigent S; Ji B; Dainat J; Nielsen KF; Frisvad JC; Workman M; Nielsen J
    Nat Microbiol; 2017 Apr; 2():17044. PubMed ID: 28368369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi.
    Martín JF; Liras P
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1579-1587. PubMed ID: 26668029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spoilage fungi and their mycotoxins in commercially marketed chestnuts.
    Overy DP; Seifert KA; Savard ME; Frisvad JC
    Int J Food Microbiol; 2003 Nov; 88(1):69-77. PubMed ID: 14527787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster.
    Fernández-Bodega Á; Álvarez-Álvarez R; Liras P; Martín JF
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6111-6121. PubMed ID: 28620689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of mycotoxins produced by Penicillium spp. inoculated in apple jam and crème fraiche during chilled storage.
    Olsen M; Lindqvist R; Bakeeva A; Leong SL; Sulyok M
    Int J Food Microbiol; 2019 Mar; 292():13-20. PubMed ID: 30553178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Putative neuromycotoxicoses in an adult male following ingestion of moldy walnuts.
    Botha CJ; Visagie CM; Sulyok M
    Mycotoxin Res; 2019 Feb; 35(1):9-16. PubMed ID: 30088215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of the gliotoxin biosynthetic gene cluster in Penicillium fungi.
    Balamurugan C; Steenwyk JL; Goldman GH; Rokas A
    G3 (Bethesda); 2024 May; 14(5):. PubMed ID: 38507596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Consensus Ochratoxin A Biosynthetic Pathway: Insights from the Genome Sequence of Aspergillus ochraceus and a Comparative Genomic Analysis.
    Wang Y; Wang L; Wu F; Liu F; Wang Q; Zhang X; Selvaraj JN; Zhao Y; Xing F; Yin WB; Liu Y
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30054361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species.
    Li B; Zong Y; Du Z; Chen Y; Zhang Z; Qin G; Zhao W; Tian S
    Mol Plant Microbe Interact; 2015 Jun; 28(6):635-47. PubMed ID: 25625822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti.
    Gillot G; Jany JL; Dominguez-Santos R; Poirier E; Debaets S; Hidalgo PI; Ullán RV; Coton E; Coton M
    Food Microbiol; 2017 Apr; 62():239-250. PubMed ID: 27889155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Description of an orthologous cluster of ochratoxin A biosynthetic genes in Aspergillus and Penicillium species. A comparative analysis.
    Gil-Serna J; García-Díaz M; González-Jaén MT; Vázquez C; Patiño B
    Int J Food Microbiol; 2018 Mar; 268():35-43. PubMed ID: 29324288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites.
    Frisvad JC; Filtenborg O
    Appl Environ Microbiol; 1983 Dec; 46(6):1301-10. PubMed ID: 6660869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses.
    García-Estrada C; Martín JF
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8303-13. PubMed ID: 27554495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel metabolites from Penicillium crustosum, including penitrem E, a tremorgenic mycotoxin.
    Kyriakidis N; Waight ES; Day JB; Mantle PG
    Appl Environ Microbiol; 1981 Jul; 42(1):61-2. PubMed ID: 7259165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and metabolite production by Penicillium roqueforti, P. paneum and P. crustosum isolated in Canada.
    Sumarah MW; Miller JD; Blackwell BA
    Mycopathologia; 2005 Jun; 159(4):571-7. PubMed ID: 15983744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The developmental regulator Pcz1 affects the production of secondary metabolites in the filamentous fungus Penicillium roqueforti.
    Rojas-Aedo JF; Gil-Durán C; Goity A; Vaca I; Levicán G; Larrondo LF; Chávez R
    Microbiol Res; 2018; 212-213():67-74. PubMed ID: 29853169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.