These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38839372)

  • 41. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems.
    Maeki M; Kimura N; Sato Y; Harashima H; Tokeshi M
    Adv Drug Deliv Rev; 2018 Mar; 128():84-100. PubMed ID: 29567396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles.
    Yanez Arteta M; Kjellman T; Bartesaghi S; Wallin S; Wu X; Kvist AJ; Dabkowska A; Székely N; Radulescu A; Bergenholtz J; Lindfors L
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3351-E3360. PubMed ID: 29588418
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradable Lipid-Modified Poly(Guanidine Thioctic Acid)s: A Fortifier of Lipid Nanoparticles to Promote the Efficacy and Safety of mRNA Cancer Vaccines.
    Yang K; Bai B; Lei J; Yu X; Qi S; Wang Y; Huang F; Tong Z; Yu G
    J Am Chem Soc; 2024 May; 146(17):11679-11693. PubMed ID: 38482849
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines.
    Li Z; Zhang XQ; Ho W; Li F; Gao M; Bai X; Xu X
    ACS Nano; 2022 Nov; 16(11):18936-18950. PubMed ID: 36269150
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics.
    De A; Ko YT
    Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery.
    Li Y; Huang X; Lee RJ; Qi Y; Wang K; Hao F; Zhang Y; Lu J; Meng Q; Li S; Xie J; Teng L
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27763492
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement.
    De A; Ko YT
    Expert Opin Drug Deliv; 2023 Jan; 20(1):75-91. PubMed ID: 36445261
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography.
    Zhang J; Haas RM; Leone AM
    Anal Chem; 2012 Jul; 84(14):6088-96. PubMed ID: 22816783
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel Ionizable Lipid Nanoparticles for SARS-CoV-2 Omicron mRNA Delivery.
    Long J; Yu C; Zhang H; Cao Y; Sang Y; Lu H; Zhang Z; Wang X; Wang H; Song G; Yang J; Wang S
    Adv Healthc Mater; 2023 May; 12(13):e2202590. PubMed ID: 36716702
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The evaluation of novel oral vaccines based on self-amplifying RNA lipid nanparticles (saRNA LNPs), saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum to neutralize SARS-CoV-2 variants alpha and delta.
    Keikha R; Hashemi-Shahri SM; Jebali A
    Sci Rep; 2021 Oct; 11(1):21308. PubMed ID: 34716391
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leveraging Biological Buffers for Efficient Messenger RNA Delivery via Lipid Nanoparticles.
    Henderson MI; Eygeris Y; Jozic A; Herrera M; Sahay G
    Mol Pharm; 2022 Nov; 19(11):4275-4285. PubMed ID: 36129254
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strategies for Improved pDNA Loading and Protection Using Cationic and Neutral LNPs with Industrial Scalability Potential Using Microfluidic Technology.
    Ottonelli I; Adani E; Bighinati A; Cuoghi S; Tosi G; Vandelli MA; Ruozi B; Marigo V; Duskey JT
    Int J Nanomedicine; 2024; 19():4235-4251. PubMed ID: 38766661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flash nanoprecipitation assisted self-assembly of ionizable lipid nanoparticles for nucleic acid delivery.
    Misra B; Hughes KA; Pentz WH; Samart P; Geldenhuys WJ; Bobbala S
    Nanoscale; 2024 Apr; 16(14):6939-6948. PubMed ID: 38511623
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lipid nanoparticles containing labile PEG-lipids transfect primary human skin cells more efficiently in the presence of apoE.
    Gregersen CH; Mearraoui R; Søgaard PP; Clergeaud G; Petersson K; Urquhart AJ; Simonsen JB
    Eur J Pharm Biopharm; 2024 Apr; 197():114219. PubMed ID: 38368913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery.
    Sun M; Dang UJ; Yuan Y; Psaras AM; Osipitan O; Brooks TA; Lu F; Di Pasqua AJ
    AAPS PharmSciTech; 2022 May; 23(5):135. PubMed ID: 35534697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device.
    Shepherd SJ; Warzecha CC; Yadavali S; El-Mayta R; Alameh MG; Wang L; Weissman D; Wilson JM; Issadore D; Mitchell MJ
    Nano Lett; 2021 Jul; 21(13):5671-5680. PubMed ID: 34189917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidic Platform Enables Shearless Aerosolization of Lipid Nanoparticles for mRNA Inhalation.
    Kim J; Jozić A; Bloom E; Jones B; Marra M; Murthy NTV; Eygeris Y; Sahay G
    ACS Nano; 2024 Apr; 18(17):11335-11348. PubMed ID: 38621181
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Current Status and Future Perspectives on MRNA Drug Manufacturing.
    Webb C; Ip S; Bathula NV; Popova P; Soriano SKV; Ly HH; Eryilmaz B; Nguyen Huu VA; Broadhead R; Rabel M; Villamagna I; Abraham S; Raeesi V; Thomas A; Clarke S; Ramsay EC; Perrie Y; Blakney AK
    Mol Pharm; 2022 Apr; 19(4):1047-1058. PubMed ID: 35238565
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the Influence of Fabrication Methods and Materials for mRNA-LNP Production: From Size and Morphology to Internal Structure and mRNA Delivery Performance In Vitro and In Vivo.
    Bi D; Wilhelmy C; Unthan D; Keil IS; Zhao B; Kolb B; Koning RI; Graewert MA; Wouters B; Zwier R; Bussmann J; Hankemeier T; Diken M; Haas H; Langguth P; Barz M; Zhang H
    Adv Healthc Mater; 2024 Jun; ():e2401252. PubMed ID: 38889433
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Representations of lipid nanoparticles using large language models for transfection efficiency prediction.
    Moayedpour S; Broadbent J; Riahi S; Bailey M; V Thu H; Dobchev D; Balsubramani A; N D Santos R; Kogler-Anele L; Corrochano-Navarro A; Li S; U Montoya F; Agarwal V; Bar-Joseph Z; Jager S
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38810107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.