These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38839743)

  • 1. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal.
    Lin Z; Qiu X; Cai Z; Li J; Zhao Y; Lin X; Zhang J; Hu X; Bai H
    Nat Commun; 2024 Jun; 15(1):4806. PubMed ID: 38839743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials.
    Won P; Valentine CS; Zadan M; Pan C; Vinciguerra M; Patel DK; Ko SH; Walker LM; Majidi C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55028-55038. PubMed ID: 36458663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct writing of flexible electronics through room temperature liquid metal ink.
    Gao Y; Li H; Liu J
    PLoS One; 2012; 7(9):e45485. PubMed ID: 23029044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A micro-vibration-driven direct ink write printing method of gallium-indium alloys.
    Lin S; Zhang L; Cong L
    Sci Rep; 2023 Mar; 13(1):3914. PubMed ID: 36890208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers.
    Young Ryu S; Kwak C; Kim J; Kim S; Cho H; Lee J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):758-767. PubMed ID: 36029590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4D Printing of Multi-Hydrogels Using Direct Ink Writing in a Supporting Viscous Liquid.
    Uchida T; Onoe H
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Demand Programming of Liquid Metal-Composite Microstructures through Direct Ink Write 3D Printing.
    Haake A; Tutika R; Schloer GM; Bartlett MD; Markvicka EJ
    Adv Mater; 2022 May; 34(20):e2200182. PubMed ID: 35353948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application.
    He X; Lu Q
    Adv Colloid Interface Sci; 2024 Feb; 324():103086. PubMed ID: 38244533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing.
    Murphy RD; Garcia RV; Oh SJ; Wood TJ; Jo KD; Read de Alaniz J; Perkins E; Hawker CJ
    Adv Mater; 2023 Jan; 35(3):e2207542. PubMed ID: 36305041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Resolution 3D Printing of Mechanically Tough Hydrogels Prepared by Thermo-Responsive Poloxamer Ink Platform.
    Imani KBC; Jo A; Choi GM; Kim B; Chung JW; Lee HS; Yoon J
    Macromol Rapid Commun; 2022 Jan; 43(2):e2100579. PubMed ID: 34708464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a collagen peptide-fish oil high internal phase emulsion on the printability and gelation of 3D-printed surimi gel inks.
    Lu S; Pei Z; Lu Q; Li Q; He Y; Feng A; Liu Z; Xue C; Liu J; Lin X; Li Y; Li C
    Food Chem; 2024 Jul; 446():138810. PubMed ID: 38402769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pickering emulgels reinforced with host-guest supramolecular inclusion complexes for high fidelity direct ink writing.
    Pang B; Ajdary R; Antonietti M; Rojas O; Filonenko S
    Mater Horiz; 2022 Feb; 9(2):835-840. PubMed ID: 34985072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embedded Core-Shell 3D Printing (eCS3DP) with Low-Viscosity Polysiloxanes.
    Karyappa R; Goh WH; Hashimoto M
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41520-41530. PubMed ID: 36048005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions.
    Mea HJ; Delgadillo L; Wan J
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14790-14797. PubMed ID: 32541054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.