These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38839743)

  • 21. Direct Ink Writing Based 4D Printing of Materials and Their Applications.
    Wan X; Luo L; Liu Y; Leng J
    Adv Sci (Weinh); 2020 Aug; 7(16):2001000. PubMed ID: 32832355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets.
    Kim J; Lee J
    Small; 2022 Apr; 18(14):e2108069. PubMed ID: 35150080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multimaterial Printing of Liquid Crystal Elastomers with Integrated Stretchable Electronics.
    Vinciguerra MR; Patel DK; Zu W; Tavakoli M; Majidi C; Yao L
    ACS Appl Mater Interfaces; 2023 May; 15(20):24777-24787. PubMed ID: 37163362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications.
    Wang X; Liu J
    Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printing by Multiphase Silicone/Water Capillary Inks.
    Roh S; Parekh DP; Bharti B; Stoyanov SD; Velev OD
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28590510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Printing of TPU-Liquid Metal Composite Inks for the Preparation of Flexible Sensing Electronics.
    Liang S; Huang M; Jiang D; Chen J; Hu L; Chen J; Wang Z
    ChemistryOpen; 2024 Sep; 13(9):e202300301. PubMed ID: 38666528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications.
    Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM
    Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of Filament Defects in Embedded 3D Printing.
    Friedrich LM; Gunther RT; Seppala JE
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32561-32578. PubMed ID: 35786823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing.
    Huan S; Ajdary R; Bai L; Klar V; Rojas OJ
    Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jammed Microgels in Deep Eutectic Solvents as a Green and Low-Cost Ink for 3D Printing of Reliable Auxetic Strain Sensors.
    Vo TH; Lam PK; Sheng YJ; Tsao HK
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):33109-33118. PubMed ID: 37382914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preheating of Gelatin Improves its Printability with Transglutaminase in Direct Ink Writing 3D Printing.
    Tan JJY; Lee CP; Hashimoto M
    Int J Bioprint; 2020; 6(4):296. PubMed ID: 33088999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of Direct Written Ink Droplets Using Electrowetting.
    Plog J; Löwe JM; Jiang Y; Pan Y; Yarin AL
    Langmuir; 2019 Aug; 35(34):11023-11036. PubMed ID: 31345035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing.
    Torres Arango MA; Zhang Y; Li R; Doerk G; Fluerasu A; Wiegart L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51044-51056. PubMed ID: 33138355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase-Change-Enabled, Rapid, High-Resolution Direct Ink Writing of Soft Silicone.
    Wang Y; Willenbacher N
    Adv Mater; 2022 Apr; 34(15):e2109240. PubMed ID: 35174913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid Metal Microgels for Three-Dimensional Printing of Smart Electronic Clothes.
    Wu P; Fu J; Xu Y; He Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13458-13467. PubMed ID: 35258916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemically Enabled Embedded Three-Dimensional Printing of Freestanding Gallium Wire-like Structures.
    Wang X; Liu X; Bi P; Zhang Y; Li L; Guo J; Zhang Y; Niu X; Wang Y; Hu L; Fan Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53966-53972. PubMed ID: 33179912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels.
    Baniasadi H; Ajdary R; Trifol J; Rojas OJ; Seppälä J
    Carbohydr Polym; 2021 Aug; 266():118114. PubMed ID: 34044931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printing of concentrated emulsions into multiphase biocompatible soft materials.
    Sommer MR; Alison L; Minas C; Tervoort E; Rühs PA; Studart AR
    Soft Matter; 2017 Mar; 13(9):1794-1803. PubMed ID: 28165099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.