These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38839855)

  • 1. In-situ tool wear condition monitoring during the end milling process based on dynamic mode and abnormal evaluation.
    Chen M; Mao J; Fu Y; Liu X; Zhou Y; Sun W
    Sci Rep; 2024 Jun; 14(1):12888. PubMed ID: 38839855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic Cutting Force Modeling with Comprehensively Considering Tool Edge Radius, Tool Flank Wear and Tool Runout in Micro-End Milling.
    Gao S; Duan X; Zhu K; Zhang Y
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariate time series data of milling processes with varying tool wear and machine tools.
    Denkena B; Klemme H; Stiehl TH
    Data Brief; 2023 Oct; 50():109574. PubMed ID: 37808546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on In-Situ Tool Wear Detection during Micro End Milling Based on Machine Vision.
    Zhang X; Yu H; Li C; Yu Z; Xu J; Li Y; Yu H
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An online monitoring method of milling cutter wear condition driven by digital twin.
    Zi X; Gao S; Xie Y
    Sci Rep; 2024 Feb; 14(1):4956. PubMed ID: 38418504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring.
    Ou J; Li H; Huang G; Zhou Q
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Unsupervised Condition Monitoring System for Electrode Milling Problems in the Resistance Welding Process.
    Ibáñez D; Garcia E; Soret J; Martos J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-Milling Tool Wear Monitoring via Nonlinear Cutting Force Model.
    Liu T; Wang Q; Wang W
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tool Wear and Milling Characteristics for Hybrid Additive Manufacturing Combining Laser Powder Bed Fusion and In Situ High-Speed Milling.
    Sommer D; Pape D; Esen C; Hellmann R
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tool Wear Monitoring in Milling Based on Fine-Grained Image Classification of Machined Surface Images.
    Yang J; Duan J; Li T; Hu C; Liang J; Shi T
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tool-Wear-Estimation System in Milling Using Multi-View CNN Based on Reflected Infrared Images.
    Jang WK; Kim DW; Seo YH; Kim BH
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Multivariate Cutting Force-Based Tool Wear Monitoring Method Using One-Dimensional Convolutional Neural Network.
    Yang X; Yuan R; Lv Y; Li L; Song H
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Machine Learning Algorithms for Tool Condition Monitoring in Milling Chipboard Process.
    Przybyś-Małaczek A; Antoniuk I; Szymanowski K; Kruk M; Kurek J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroEye : A low-cost online tool wear monitoring system with modular 3D-printed components for micro-milling application.
    Christiand ; Kiswanto G; Baskoro AS; Hiltansyah F; Fitriawan MR; Putra RG; Putri SK; Ko TJ
    HardwareX; 2022 Apr; 11():e00269. PubMed ID: 35509945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.
    Chung TK; Yeh PC; Lee H; Lin CM; Tseng CY; Lo WT; Wang CM; Wang WC; Tu CJ; Tasi PY; Chang JW
    Sensors (Basel); 2016 Feb; 16(3):269. PubMed ID: 26907297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics-informed Gaussian process for tool wear prediction.
    Zhu K; Huang C; Li S; Lin X
    ISA Trans; 2023 Dec; 143():548-556. PubMed ID: 37770369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data.
    García Nieto PJ; García-Gonzalo E; Ordóñez Galán C; Bernardo Sánchez A
    Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the Tool Wear Suppression Mechanism in Non-Resonant Vibration-Assisted Micro Milling.
    Zheng L; Chen W; Huo D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tool Wear Condition Monitoring by Combining Variational Mode Decomposition and Ensemble Learning.
    Yuan J; Liu L; Yang Z; Zhang Y
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling.
    Wiciak-Pikuła M; Felusiak-Czyryca A; Twardowski P
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.