These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38839870)

  • 1. The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries.
    Ye C; Li H; Chen Y; Hao J; Liu J; Shan J; Qiao SZ
    Nat Commun; 2024 Jun; 15(1):4797. PubMed ID: 38839870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anode Material Options Toward 500 Wh kg
    Bi CX; Zhao M; Hou LP; Chen ZX; Zhang XQ; Li BQ; Yuan H; Huang JQ
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103910. PubMed ID: 34784102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries.
    Hao H; Hutter T; Boyce BL; Watt J; Liu P; Mitlin D
    Chem Rev; 2022 May; 122(9):8053-8125. PubMed ID: 35349271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research Progress toward the Practical Applications of Lithium-Sulfur Batteries.
    Lochala J; Liu D; Wu B; Robinson C; Xiao J
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24407-24421. PubMed ID: 28617586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries.
    Zhao M; Peng HJ; Li BQ; Huang JQ
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38319810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Practical Application of Li-S Battery with High Sulfur Loading and Lean Electrolyte: Will Carbon-Based Hosts Win This Race?
    Gong Y; Li J; Yang K; Li S; Xu M; Zhang G; Shi Y; Cai Q; Li H; Zhao Y
    Nanomicro Lett; 2023 Jun; 15(1):150. PubMed ID: 37286885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
    Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G
    Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium-Sulfur Battery Cathode Design: Tailoring Metal-Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion.
    Ng SF; Lau MYL; Ong WJ
    Adv Mater; 2021 Dec; 33(50):e2008654. PubMed ID: 33811420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities.
    Zhao M; Li BQ; Peng HJ; Yuan H; Wei JY; Huang JQ
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12636-12652. PubMed ID: 31490599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium-Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density.
    Zhang Y; Zhang X; Silva SRP; Ding B; Zhang P; Shao G
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103879. PubMed ID: 34796682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators for Lithium-Sulfur Batteries.
    Qian J; Xing Y; Yang Y; Li Y; Yu K; Li W; Zhao T; Ye Y; Li L; Wu F; Chen R
    Adv Mater; 2021 Jun; 33(25):e2100810. PubMed ID: 33987896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries.
    Liu YT; Liu S; Li GR; Gao XP
    Adv Mater; 2021 Feb; 33(8):e2003955. PubMed ID: 33368710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes.
    Shinde SS; Wagh NK; Kim SH; Lee JH
    Adv Sci (Weinh); 2023 Nov; 10(32):e2304235. PubMed ID: 37743719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium-Sulfur Batteries.
    Wang Z; Xu X; Liu Z; Zhang D; Yuan J; Liu J
    Chemistry; 2021 Sep; 27(54):13494-13512. PubMed ID: 34288172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defects Engineering of Lightweight Metal-Organic Frameworks-Based Electrocatalytic Membrane for High-Loading Lithium-Sulfur Batteries.
    Li S; Lin J; Ding Y; Xu P; Guo X; Xiong W; Wu DY; Dong Q; Chen J; Zhang L
    ACS Nano; 2021 Aug; 15(8):13803-13813. PubMed ID: 34379405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum and lithium sulfur batteries: a review of recent progress and future directions.
    Akgenc B; Sarikurt S; Yagmurcukardes M; Ersan F
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33882469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of covalent organic frameworks in Lithium-Sulfur batteries: A mini review for current research progress.
    Wang Z; Pan F; Zhao Q; Lv M; Zhang B
    Front Chem; 2022; 10():1055649. PubMed ID: 36339042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Nanostructured Materials for Electrocatalysis in Lithium-Sulfur Batteries.
    Song Z; Jiang W; Jian X; Hu F
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.