These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38839870)

  • 41. Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li-S Batteries.
    Zhou F; Li Z; Luo X; Wu T; Jiang B; Lu LL; Yao HB; Antonietti M; Yu SH
    Nano Lett; 2018 Feb; 18(2):1035-1043. PubMed ID: 29300493
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co
    Wang F; Qian J; Li Y; Yu K; Li L; Wu F; Chen R
    ACS Appl Mater Interfaces; 2020 May; 12(19):21701-21708. PubMed ID: 32315518
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon Coated Metal-Based Composite Electrode Materials for Lithium Sulfur Batteries: A Review.
    Cheng R; Xian X; Manasa P; Liu J; Xia Y; Guan Y; Wei S; Li Z; Li B; Xu F; Sun L
    Chem Rec; 2022 Oct; 22(10):e202200168. PubMed ID: 36240459
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes.
    Xie J; Zhang Q
    Small; 2019 Apr; 15(15):e1805061. PubMed ID: 30848095
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent Advance in Ionic-Liquid-Based Electrolytes for Rechargeable Metal-Ion Batteries.
    Zhou W; Zhang M; Kong X; Huang W; Zhang Q
    Adv Sci (Weinh); 2021 Jul; 8(13):2004490. PubMed ID: 34258155
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions.
    Li L; Zhang W; Pan W; Wang M; Zhang H; Zhang D; Zhang D
    Nanoscale; 2021 Dec; 13(46):19291-19305. PubMed ID: 34787622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Li
    Jiang J; Fan Q; Chou S; Guo Z; Konstantinov K; Liu H; Wang J
    Small; 2021 Mar; 17(9):e1903934. PubMed ID: 31657137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.
    Tao T; Lu S; Fan Y; Lei W; Huang S; Chen Y
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28626966
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Revamping Lithium-Sulfur Batteries for High Cell-Level Energy Density by Synergistic Utilization of Polysulfide Additives and Artificial Solid-Electrolyte Interphase Layers.
    Wu P; Dong M; Tan J; Kang DA; Yu C
    Adv Mater; 2021 Dec; 33(48):e2104246. PubMed ID: 34608672
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Boosting Lean Electrolyte Lithium-Sulfur Battery Performance with Transition Metals: A Comprehensive Review.
    Pan H; Cheng Z; Zhou Z; Xie S; Zhang W; Han N; Guo W; Fransaer J; Luo J; Cabot A; Wübbenhorst M
    Nanomicro Lett; 2023 Jun; 15(1):165. PubMed ID: 37386313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy.
    Lee BJ; Zhao C; Yu JH; Kang TH; Park HY; Kang J; Jung Y; Liu X; Li T; Xu W; Zuo XB; Xu GL; Amine K; Yu JS
    Nat Commun; 2022 Aug; 13(1):4629. PubMed ID: 35941110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cathode Kinetics Evaluation in Lean-Electrolyte Lithium-Sulfur Batteries.
    Chen ZX; Cheng Q; Li XY; Li Z; Song YW; Sun F; Zhao M; Zhang XQ; Li BQ; Huang JQ
    J Am Chem Soc; 2023 Aug; 145(30):16449-16457. PubMed ID: 37427442
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shielding Polysulfide Intermediates by an Organosulfur-Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium-Sulfur Batteries.
    Wei JY; Zhang XQ; Hou LP; Shi P; Li BQ; Xiao Y; Yan C; Yuan H; Huang JQ
    Adv Mater; 2020 Sep; 32(37):e2003012. PubMed ID: 32761715
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Progress for Concurrent Realization of Shuttle-Inhibition and Dendrite-Free Lithium-Sulfur Batteries.
    Yao W; Xu J; Ma L; Lu X; Luo D; Qian J; Zhan L; Manke I; Yang C; Adelhelm P; Chen R
    Adv Mater; 2023 Aug; 35(32):e2212116. PubMed ID: 36961362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries.
    Adelhelm P; Hartmann P; Bender CL; Busche M; Eufinger C; Janek J
    Beilstein J Nanotechnol; 2015; 6():1016-55. PubMed ID: 25977873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bi-Based Electrode Materials for Alkali Metal-Ion Batteries.
    Wang A; Hong W; Yang L; Tian Y; Qiu X; Zou G; Hou H; Ji X
    Small; 2020 Dec; 16(48):e2004022. PubMed ID: 33155416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.