These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 3883990)

  • 21. Modifications of cellular thiols during growth and squamous differentiation of cultured human bronchial epithelial cells.
    Atzori L; Dypbukt JM; Hybbinette SS; Moldéus P; Grafström RC
    Exp Cell Res; 1994 Mar; 211(1):115-20. PubMed ID: 8125149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of glutathione levels, sulfate levels, and metabolic inhibitors on covalent binding of 2-amino-3-methylimidazo[4,5-f]quinoline and 2-acetylaminofluorene to cell macromolecules in primary monolayer cultures of adult rat hepatocytes.
    Loretz LJ; Pariza MW
    Carcinogenesis; 1984 Jul; 5(7):895-9. PubMed ID: 6428766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow cytometric analysis of protein thiol groups in relation to the cell cycle and the intracellular content of glutathione in rat hepatocytes.
    Principe P; Wilson GD; Riley PA; Slater TF
    Cytometry; 1989 Nov; 10(6):750-61. PubMed ID: 2582966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular thiols in rat liver cell lines possessing different growth characteristics.
    Principe P; Riley PA; Slater TF
    Cell Biochem Funct; 1991 Apr; 9(2):125-33. PubMed ID: 1934313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Turnover and functions of glutathione studied with isolated hepatic and renal cells.
    Orrenius S; Ormstad K; Thor H; Jewell SA
    Fed Proc; 1983 Dec; 42(15):3177-88. PubMed ID: 6315493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of nonprotein thiols on protein synthesis in isolated rat hepatocytes.
    Asensi M; Garcia-España A; Pallardó FV; Vina J; Estrela JM
    Experientia; 1996 Feb; 52(2):111-4. PubMed ID: 8608810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of thiols in ATP-dependent transport of S-(2,4-dinitrophenyl)glutathione by rat liver plasma membrane vesicles.
    Matsuda Y; Epstein LF; Gatmaitan Z; Arias IM
    Biochim Biophys Acta; 1996 Feb; 1279(1):35-42. PubMed ID: 8624358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hepatocytes in primary culture become susceptible to paracetamol injury after depletion of glutathione using DL-buthionine-SR-sulphoximine (BSO).
    Hue DP; Griffith KL; McLean AE
    Biochem Pharmacol; 1985 Dec; 34(24):4341-4. PubMed ID: 4074395
    [No Abstract]   [Full Text] [Related]  

  • 29. Differences in organizational structure of insulin receptor on rat adipocyte and liver plasma membranes: role of disulfide bonds.
    Schweitzer JB; Smith RM; Jarett L
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4692-6. PubMed ID: 7001464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Four sulfhydryl-modifying compounds cause different structural damage but similar functional damage in murine lymphocytes.
    Duncan DD; Lawrence DA
    Chem Biol Interact; 1988; 68(1-2):137-52. PubMed ID: 3203405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of N-ethylmaleimide-sensitive thiol groups required for the GTP-dependent fusion of endoplasmic reticulum membranes.
    Sokoloff AV; Whalley T; Zimmerberg J
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):23-30. PubMed ID: 7492317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thiols, thiol depletion, and thermosensitivity.
    Mitchell JB; Russo A
    Radiat Res; 1983 Sep; 95(3):471-85. PubMed ID: 6611860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two distinct types of SH-groups are necessary for bumetanide and bile acid uptake into isolated rat hepatocytes.
    Blumrich M; Petzinger E
    Biochim Biophys Acta; 1993 Jul; 1149(2):278-84. PubMed ID: 8391841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the possible role of thiol groups in the insulin-releasing action of mercurials, organic disulfides, alkylating agents, and sulfonylureas.
    Hellman B; Lernmark A; Sehlin J; Söderberg M; Täljedal IB
    Endocrinology; 1976 Nov; 99(5):1398-406. PubMed ID: 186256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resolution of protein disulphide-isomerase and glutathione-insulin transhydrogenase activities by covalent chromatography.
    Hillson DA; Freedman RB
    Biochem J; 1980 Nov; 191(2):373-88. PubMed ID: 7236202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the nature and regulation of the cellular thio:disulphide potential.
    Ziegler DM; Duffel MW; Poulsen LL
    Ciba Found Symp; 1979; (72):191-204. PubMed ID: 398762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thiol-mediated redox regulation of neutrophil apoptosis.
    Watson RW; Rotstein OD; Nathens AB; Dackiw AP; Marshall JC
    Surgery; 1996 Aug; 120(2):150-7; discussion 157-8. PubMed ID: 8751577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucocorticoid-induced insulin resistance: the importance of postbinding events in the regulation of insulin binding, action, and degradation in freshly isolated and primary cultures of rat hepatocytes.
    Caro JF; Amatruda JM
    J Clin Invest; 1982 Apr; 69(4):866-75. PubMed ID: 7042756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism of Hg2+ toxicity in cultured human oral fibroblasts: the involvement of cellular thiols.
    Liu Y; Cotgreave I; Atzori L; Grafström RC
    Chem Biol Interact; 1992 Nov; 85(1):69-78. PubMed ID: 1458551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiol and disulfide metabolites of the radiation protector and potential chemopreventive agent WR-2721 are linked to both its anti-cytotoxic and anti-mutagenic mechanisms of action.
    Grdina DJ; Shigematsu N; Dale P; Newton GL; Aguilera JA; Fahey RC
    Carcinogenesis; 1995 Apr; 16(4):767-74. PubMed ID: 7728953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.