These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 38839949)
1. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Tomar A; Gomez-Velazquez M; Gerlini R; Comas-Armangué G; Makharadze L; Kolbe T; Boersma A; Dahlhoff M; Burgstaller JP; Lassi M; Darr J; Toppari J; Virtanen H; Kühnapfel A; Scholz M; Landgraf K; Kiess W; Vogel M; Gailus-Durner V; Fuchs H; Marschall S; Hrabě de Angelis M; Kotaja N; Körner A; Teperino R Nature; 2024 Jun; 630(8017):720-727. PubMed ID: 38839949 [TBL] [Abstract][Full Text] [Related]
2. Acrylamide modulates the mouse epididymal proteome to drive alterations in the sperm small non-coding RNA profile and dysregulate embryo development. Trigg NA; Skerrett-Byrne DA; Xavier MJ; Zhou W; Anderson AL; Stanger SJ; Katen AL; De Iuliis GN; Dun MD; Roman SD; Eamens AL; Nixon B Cell Rep; 2021 Oct; 37(1):109787. PubMed ID: 34610313 [TBL] [Abstract][Full Text] [Related]
3. Epididymal RNase T2 contributes to astheno-teratozoospermia and intergenerational metabolic disorder through epididymosome-sperm interaction. Ma Z; Li J; Fu L; Fu R; Tang N; Quan Y; Xin Z; Ding Z; Liu Y BMC Med; 2023 Nov; 21(1):453. PubMed ID: 37993934 [TBL] [Abstract][Full Text] [Related]
4. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Zhang Y; Zhang X; Shi J; Tuorto F; Li X; Liu Y; Liebers R; Zhang L; Qu Y; Qian J; Pahima M; Liu Y; Yan M; Cao Z; Lei X; Cao Y; Peng H; Liu S; Wang Y; Zheng H; Woolsey R; Quilici D; Zhai Q; Li L; Zhou T; Yan W; Lyko F; Zhang Y; Zhou Q; Duan E; Chen Q Nat Cell Biol; 2018 May; 20(5):535-540. PubMed ID: 29695786 [TBL] [Abstract][Full Text] [Related]
5. The influence of paternal diet on sncRNA-mediated epigenetic inheritance. Klastrup LK; Bak ST; Nielsen AL Mol Genet Genomics; 2019 Feb; 294(1):1-11. PubMed ID: 30229293 [TBL] [Abstract][Full Text] [Related]
7. Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring's Sperm. Fullston T; Ohlsson-Teague EM; Print CG; Sandeman LY; Lane M PLoS One; 2016; 11(11):e0166076. PubMed ID: 27814400 [TBL] [Abstract][Full Text] [Related]
8. Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs. Zhang Y; Ren L; Sun X; Zhang Z; Liu J; Xin Y; Yu J; Jia Y; Sheng J; Hu GF; Zhao R; He B Nat Commun; 2021 Nov; 12(1):6673. PubMed ID: 34845238 [TBL] [Abstract][Full Text] [Related]
9. The anti-inflammatory agent 5-ASA reduces the level of specific tsRNAs in sperm cells of high-fat fed C57BL/6J mouse sires and improves glucose tolerance in female offspring. Bak ST; Haupt-Jorgensen M; Dudele A; Wegener G; Wang T; Nielsen AL; Lund S J Diabetes Complications; 2023 Sep; 37(9):108563. PubMed ID: 37499293 [TBL] [Abstract][Full Text] [Related]
10. The Sperm Small RNA Transcriptome: Implications beyond Reproductive Disorder. Chan SY; Wan CWT; Law TYS; Chan DYL; Fok EKL Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555356 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Sellem E; Marthey S; Rau A; Jouneau L; Bonnet A; Le Danvic C; Guyonnet B; Kiefer H; Jammes H; Schibler L Epigenetics Chromatin; 2021 May; 14(1):24. PubMed ID: 34030709 [TBL] [Abstract][Full Text] [Related]
12. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Chen Q; Yan M; Cao Z; Li X; Zhang Y; Shi J; Feng GH; Peng H; Zhang X; Zhang Y; Qian J; Duan E; Zhai Q; Zhou Q Science; 2016 Jan; 351(6271):397-400. PubMed ID: 26721680 [TBL] [Abstract][Full Text] [Related]
13. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. Pepin AS; Lafleur C; Lambrot R; Dumeaux V; Kimmins S Mol Metab; 2022 May; 59():101463. PubMed ID: 35183795 [TBL] [Abstract][Full Text] [Related]
14. Alterations in sperm RNAs persist after alcohol cessation and correlate with epididymal mitochondrial dysfunction. Roach AN; Bhadsavle SS; Higgins SL; Derrico DD; Basel A; Thomas KN; Golding MC Andrology; 2024 Jul; 12(5):1012-1023. PubMed ID: 38044754 [TBL] [Abstract][Full Text] [Related]
15. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Castillo J; Jodar M; Oliva R Hum Reprod Update; 2018 Sep; 24(5):535-555. PubMed ID: 29800303 [TBL] [Abstract][Full Text] [Related]
16. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. James ER; Carrell DT; Aston KI; Jenkins TG; Yeste M; Salas-Huetos A Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751076 [TBL] [Abstract][Full Text] [Related]
17. Male reproductive health and intergenerational metabolic responses from a small RNA perspective. Nätt D; Öst A J Intern Med; 2020 Sep; 288(3):305-320. PubMed ID: 32415866 [TBL] [Abstract][Full Text] [Related]
18. Small Noncoding RNAs Contribute to Sperm Oxidative Stress-Induced Programming of Behavioral and Metabolic Phenotypes in Offspring. Ren L; Xin Y; Sun X; Zhang Y; Chen Y; Liu S; He B Oxid Med Cell Longev; 2022; 2022():6877283. PubMed ID: 35707281 [TBL] [Abstract][Full Text] [Related]
20. Alterations of small non-coding RNA in the spermatozoa of mice with paternal experimental autoimmune epididymo-orchitis are associated with metabolic dysfunction in offspring. Yang C; Li J; Liu JC; Zeng Q; Yeung WS; Chiu PC; Duan YG Andrology; 2025 Jan; 13(1):119-129. PubMed ID: 38127116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]