These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Leonard JM; Mitchell J; Beinart RA; Delaney JA; Sanders JG; Ellis G; Goddard EA; Girguis PR; Scott KM Appl Environ Microbiol; 2021 Aug; 87(17):e0079421. PubMed ID: 34190607 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila. Mitchell JH; Leonard JM; Delaney J; Girguis PR; Scott KM Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628148 [TBL] [Abstract][Full Text] [Related]
4. Genetic Evidence for Two Carbon Fixation Pathways (the Calvin-Benson-Bassham Cycle and the Reverse Tricarboxylic Acid Cycle) in Symbiotic and Free-Living Bacteria. Rubin-Blum M; Dubilier N; Kleiner M mSphere; 2019 Jan; 4(1):. PubMed ID: 30602523 [TBL] [Abstract][Full Text] [Related]
5. Widespread occurrence of two carbon fixation pathways in tubeworm endosymbionts: lessons from hydrothermal vent associated tubeworms from the mediterranean sea. Thiel V; Hügler M; Blümel M; Baumann HI; Gärtner A; Schmaljohann R; Strauss H; Garbe-Schönberg D; Petersen S; Cowart DA; Fisher CR; Imhoff JF Front Microbiol; 2012; 3():423. PubMed ID: 23248622 [TBL] [Abstract][Full Text] [Related]
6. Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity. Reveillaud J; Anderson R; Reves-Sohn S; Cavanaugh C; Huber JA Microbiome; 2018 Jan; 6(1):19. PubMed ID: 29374496 [TBL] [Abstract][Full Text] [Related]
7. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Girguis PR; Childress JJ J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492 [TBL] [Abstract][Full Text] [Related]
8. Endosymbiont genomes yield clues of tubeworm success. Li Y; Liles MR; Halanych KM ISME J; 2018 Nov; 12(11):2785-2795. PubMed ID: 30022157 [TBL] [Abstract][Full Text] [Related]
9. Characterizing the plasticity of nitrogen metabolism by the host and symbionts of the hydrothermal vent chemoautotrophic symbioses Ridgeia piscesae. Liao L; Wankel SD; Wu M; Cavanaugh CM; Girguis PR Mol Ecol; 2014 Mar; 23(6):1544-1557. PubMed ID: 24237389 [TBL] [Abstract][Full Text] [Related]
10. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879 [TBL] [Abstract][Full Text] [Related]
11. Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. Robidart JC; Roque A; Song P; Girguis PR PLoS One; 2011; 6(7):e21692. PubMed ID: 21779334 [TBL] [Abstract][Full Text] [Related]
12. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Hou J; Sievert SM; Wang Y; Seewald JS; Natarajan VP; Wang F; Xiao X Microbiome; 2020 Jun; 8(1):102. PubMed ID: 32605604 [TBL] [Abstract][Full Text] [Related]
13. Diversity of Total Bacterial Communities and Chemoautotrophic Populations in Sulfur-Rich Sediments of Shallow-Water Hydrothermal Vents off Kueishan Island, Taiwan. Wang L; Cheung MK; Liu R; Wong CK; Kwan HS; Hwang JS Microb Ecol; 2017 Apr; 73(3):571-582. PubMed ID: 27909749 [TBL] [Abstract][Full Text] [Related]
14. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. Fortunato CS; Huber JA ISME J; 2016 Aug; 10(8):1925-38. PubMed ID: 26872039 [TBL] [Abstract][Full Text] [Related]
15. Endosymbionts of Metazoans Dwelling in the PACManus Hydrothermal Vent: Diversity and Potential Adaptive Features Revealed by Genome Analysis. Li L; Wang M; Li L; Du Z; Sun Y; Wang X; Zhang X; Li C Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32859597 [TBL] [Abstract][Full Text] [Related]
16. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236 [TBL] [Abstract][Full Text] [Related]
17. Spatial differences in East scotia ridge hydrothermal vent food webs: influences of chemistry, microbiology and predation on trophodynamics. Reid WD; Sweeting CJ; Wigham BD; Zwirglmaier K; Hawkes JA; McGill RA; Linse K; Polunin NV PLoS One; 2013; 8(6):e65553. PubMed ID: 23762393 [TBL] [Abstract][Full Text] [Related]
18. From CO2 to cell: energetic expense of creating biomass using the Calvin-Benson-Bassham and reductive citric acid cycles based on genome data. Mangiapia M; Scott K FEMS Microbiol Lett; 2016 Apr; 363(7):. PubMed ID: 26940292 [TBL] [Abstract][Full Text] [Related]
19. Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria). Assié A; Leisch N; Meier DV; Gruber-Vodicka H; Tegetmeyer HE; Meyerdierks A; Kleiner M; Hinzke T; Joye S; Saxton M; Dubilier N; Petersen JM ISME J; 2020 Jan; 14(1):104-122. PubMed ID: 31562384 [TBL] [Abstract][Full Text] [Related]
20. Fate of nitrate acquired by the tubeworm Riftia pachyptila. Girguis PR; Lee RW; Desaulniers N; Childress JJ; Pospesel M; Felbeck H; Zal F Appl Environ Microbiol; 2000 Jul; 66(7):2783-90. PubMed ID: 10877768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]