These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38840316)

  • 1. A Bayesian method to detect drug-drug interaction using external information for spontaneous reporting system.
    Tada K; Maruo K; Gosho M
    Stat Med; 2024 Aug; 43(18):3353-3363. PubMed ID: 38840316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Borrowing external information to improve Bayesian confidence propagation neural network.
    Tada K; Maruo K; Isogawa N; Yamaguchi Y; Gosho M
    Eur J Clin Pharmacol; 2020 Sep; 76(9):1311-1319. PubMed ID: 32488331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
    Liu R; AbdulHameed MDM; Kumar K; Yu X; Wallqvist A; Reifman J
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):44. PubMed ID: 28595649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying adverse drug reactions associated with drug-drug interactions: data mining of a spontaneous reporting database in Italy.
    Leone R; Magro L; Moretti U; Cutroneo P; Moschini M; Motola D; Tuccori M; Conforti A
    Drug Saf; 2010 Aug; 33(8):667-75. PubMed ID: 20635825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering clinical drug-drug interactions with known pharmacokinetics mechanisms using spontaneous reporting systems and electronic health records.
    Jeong E; Su Y; Li L; Chen Y
    J Biomed Inform; 2024 May; 153():104639. PubMed ID: 38583580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug interactions with cholinesterase inhibitors: an analysis of the French pharmacovigilance database and a comparison of two national drug formularies (Vidal, British National Formulary).
    Tavassoli N; Sommet A; Lapeyre-Mestre M; Bagheri H; Montrastruc JL
    Drug Saf; 2007; 30(11):1063-71. PubMed ID: 17973542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simulation-based comparison of drug-drug interaction signal detection methods.
    Jung D; Jung I
    PLoS One; 2024; 19(4):e0300268. PubMed ID: 38630680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propensity score-adjusted three-component mixture model for drug-drug interaction data mining in FDA Adverse Event Reporting System.
    Wang X; Li L; Wang L; Feng W; Zhang P
    Stat Med; 2020 Mar; 39(7):996-1010. PubMed ID: 31880829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.
    Ibrahim H; Saad A; Abdo A; Sharaf Eldin A
    J Biomed Inform; 2016 Apr; 60():294-308. PubMed ID: 26903152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Drug-Drug Interactions in Spontaneous Reports Utilizing Signal Detection and Biological Plausibility Aspects.
    Kontsioti E; Maskell S; Anderson I; Pirmohamed M
    Clin Pharmacol Ther; 2024 Jul; 116(1):165-176. PubMed ID: 38590106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A signal detection method to detect adverse drug reactions using a parametric time-to-event model in simulated cohort data.
    Cornelius VR; Sauzet O; Evans SJ
    Drug Saf; 2012 Jul; 35(7):599-610. PubMed ID: 22702641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data mining in pharmacovigilance--detecting the unexpected: the role of index of suspicion of the reporter.
    Sundström A; Hallberg P
    Drug Saf; 2009; 32(5):419-27. PubMed ID: 19419236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining heterogeneous networks with topological features constructed from patient-contributed content for pharmacovigilance.
    Yang CC; Yang H
    Artif Intell Med; 2018 Aug; 90():42-52. PubMed ID: 30093253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions.
    Hauben M; Horn S; Reich L
    Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting high-quality signals of adverse drug-drug interactions from spontaneous reporting data.
    Zhan C; Roughead E; Liu L; Pratt N; Li J
    J Biomed Inform; 2020 Dec; 112():103603. PubMed ID: 33153975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of adverse drug reactions in geriatric inpatients using a computerised drug database.
    Egger T; Dormann H; Ahne G; Runge U; Neubert A; Criegee-Rieck M; Gassmann KG; Brune K
    Drugs Aging; 2003; 20(10):769-76. PubMed ID: 12875612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixture drug-count response model for the high-dimensional drug combinatory effect on myopathy.
    Wang X; Zhang P; Chiang CW; Wu H; Shen L; Ning X; Zeng D; Wang L; Quinney SK; Feng W; Li L
    Stat Med; 2018 Feb; 37(4):673-686. PubMed ID: 29171062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of chi-square statistics for screening adverse drug-drug interactions in spontaneous reporting systems.
    Gosho M; Maruo K; Tada K; Hirakawa A
    Eur J Clin Pharmacol; 2017 Jun; 73(6):779-786. PubMed ID: 28280890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Criteria revision and performance comparison of three methods of signal detection applied to the spontaneous reporting database of a pharmaceutical manufacturer.
    Matsushita Y; Kuroda Y; Niwa S; Sonehara S; Hamada C; Yoshimura I
    Drug Saf; 2007; 30(8):715-26. PubMed ID: 17696584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying high risk medications causing potential drug-drug interactions in outpatients: A prescription database study based on an online surveillance system.
    Toivo TM; Mikkola JA; Laine K; Airaksinen M
    Res Social Adm Pharm; 2016; 12(4):559-68. PubMed ID: 26459026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.