These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38840325)

  • 1. Molecular Dynamics Simulations Help Determine the Molecular Mechanisms of Lasioglossin-III and Its Variant Peptides' Membrane Interfacial Interactions.
    Kumar A; Mishra B; Konar AD; Mylonakis E; Basu A
    J Phys Chem B; 2024 Jun; 128(25):6049-6058. PubMed ID: 38840325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes.
    Chen L; Li X; Gao L; Fang W
    J Phys Chem B; 2015 Jan; 119(3):850-60. PubMed ID: 25062757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of GF-17 derived from LL-37 antimicrobial peptide with bacterial membranes: a molecular dynamics simulation study.
    Aghazadeh H; Ganjali Koli M; Ranjbar R; Pooshang Bagheri K
    J Comput Aided Mol Des; 2020 Dec; 34(12):1261-1273. PubMed ID: 33009624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations.
    Bond PJ; Khalid S
    Protein Pept Lett; 2010 Nov; 17(11):1313-27. PubMed ID: 20673230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics.
    Horn JN; Sengillo JD; Lin D; Romo TD; Grossfield A
    Biochim Biophys Acta; 2012 Feb; 1818(2):212-8. PubMed ID: 21819964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C-Terminal VPRTES Tail of LL-37 Influences the Mode of Attachment to a Lipid Bilayer and Antimicrobial Activity.
    de Miguel Catalina A; Forbrig E; Kozuch J; Nehls C; Paulowski L; Gutsmann T; Hildebrandt P; Mroginski MA
    Biochemistry; 2019 May; 58(19):2447-2462. PubMed ID: 31016971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III.
    Battista F; Oliva R; Del Vecchio P; Winter R; Petraccone L
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.
    Bandyopadhyay S; Lee M; Sivaraman J; Chatterjee C
    Biochem Biophys Res Commun; 2013 Jan; 430(1):1-6. PubMed ID: 23159628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicle protrusion induced by antimicrobial peptides suggests common carpet mechanism for short antimicrobial peptides.
    Park P; Matsubara DK; Barzotto DR; Lima FS; Chaimovich H; Marrink SJ; Cuccovia IM
    Sci Rep; 2024 Apr; 14(1):9701. PubMed ID: 38678109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study.
    Cheraghi N; Hosseini M; Mohammadinejad S
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane interactions and pore formation by the antimicrobial peptide protegrin.
    Lazaridis T; He Y; Prieto L
    Biophys J; 2013 Feb; 104(3):633-42. PubMed ID: 23442914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of physicochemical properties of peptides from soy protein on their antimicrobial activity.
    Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G
    Peptides; 2017 Aug; 94():10-18. PubMed ID: 28587835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular insights into the interactions of GF-17 with the gram-negative and gram-positive bacterial lipid bilayers.
    Jahangiri S; Jafari M; Arjomand M; Mehrnejad F
    J Cell Biochem; 2018 Nov; 119(11):9205-9216. PubMed ID: 30076752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Interaction of Antimicrobial Peptides with Lipid Structures Studied by Coarse-Grained Molecular Dynamics Simulations.
    Balatti GE; Ambroggio EE; Fidelio GD; Martini MF; Pickholz M
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29053635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.