These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
60 related articles for article (PubMed ID: 3884044)
1. Interaction of hydrophobic bis (D-mannose) derivatives with adipocyte and erythrocyte sugar transport systems. Parkar BA; Midgley PJ; Holman GD Biochim Biophys Acta; 1985 Mar; 814(1):103-10. PubMed ID: 3884044 [TBL] [Abstract][Full Text] [Related]
2. A new class of sugar analogues for use in the investigation of sugar transport. Midgley PJ; Parkar BA; Holman GD Biochim Biophys Acta; 1985 Jan; 812(1):33-41. PubMed ID: 3881127 [TBL] [Abstract][Full Text] [Related]
3. Determination of the rates of appearance and loss of glucose transporters at the cell surface of rat adipose cells. Clark AE; Holman GD; Kozka IJ Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):235-41. PubMed ID: 1883332 [TBL] [Abstract][Full Text] [Related]
4. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
5. Photolabeling of erythrocyte and adipocyte hexose transporters using a benzophenone derivative of bis(D-mannose). Holman GD; Karim AR; Karim B Biochim Biophys Acta; 1988 Dec; 946(1):75-84. PubMed ID: 3207733 [TBL] [Abstract][Full Text] [Related]
6. Cell-surface biotinylation of GLUT4 using bis-mannose photolabels. Koumanov F; Yang J; Jones AE; Hatanaka Y; Holman GD Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1209-15. PubMed ID: 9494087 [TBL] [Abstract][Full Text] [Related]
7. Kinetic resolution of the separate GLUT1 and GLUT4 glucose transport activities in 3T3-L1 cells. Palfreyman RW; Clark AE; Denton RM; Holman GD; Kozka IJ Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):275-82. PubMed ID: 1599406 [TBL] [Abstract][Full Text] [Related]
8. Repeat treatment of obese mice with BRL 49653, a new potent insulin sensitizer, enhances insulin action in white adipocytes. Association with increased insulin binding and cell-surface GLUT4 as measured by photoaffinity labeling. Young PW; Cawthorne MA; Coyle PJ; Holder JC; Holman GD; Kozka IJ; Kirkham DM; Lister CA; Smith SA Diabetes; 1995 Sep; 44(9):1087-92. PubMed ID: 7657033 [TBL] [Abstract][Full Text] [Related]
9. Cell surface accessibility of GLUT4 glucose transporters in insulin-stimulated rat adipose cells. Modulation by isoprenaline and adenosine. Vannucci SJ; Nishimura H; Satoh S; Cushman SW; Holman GD; Simpson IA Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):325-30. PubMed ID: 1445278 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of hexose transport by adenosine derivatives in human erythrocytes. May JM J Cell Physiol; 1988 May; 135(2):332-8. PubMed ID: 3372599 [TBL] [Abstract][Full Text] [Related]
11. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656 [TBL] [Abstract][Full Text] [Related]
12. Characterization of GLUT3 protein expressed in Chinese hamster ovary cells. Asano T; Katagiri H; Takata K; Tsukuda K; Lin JL; Ishihara H; Inukai K; Hirano H; Yazaki Y; Oka Y Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):189-93. PubMed ID: 1445263 [TBL] [Abstract][Full Text] [Related]
13. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Helgerson AL; Carruthers A Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504 [TBL] [Abstract][Full Text] [Related]
14. Inositol phospho-oligosaccharides from rat fibroblasts and adipocytes stimulate 3-O-methylglucose transport. Kellerer M; Machicao F; Berti L; Sixt B; Mushack J; Seffer E; Mosthaf L; Ullrich A; Häring HU Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):699-704. PubMed ID: 8240280 [TBL] [Abstract][Full Text] [Related]
15. Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model. Naftalin RJ; Rist RJ Biochim Biophys Acta; 1994 Apr; 1191(1):65-78. PubMed ID: 8155685 [TBL] [Abstract][Full Text] [Related]
16. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat. Rasmussen MJ; Clausen T Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557 [TBL] [Abstract][Full Text] [Related]
17. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism. Cloherty EK; Diamond DL; Heard KS; Carruthers A Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962 [TBL] [Abstract][Full Text] [Related]
18. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes. Harrison SA; Buxton JM; Czech MP Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7839-43. PubMed ID: 1881918 [TBL] [Abstract][Full Text] [Related]
19. Photolabeling of the adipocyte hexose carrier with an aryl azide derivative of maltose. May JM; Horuk R; Olefsky JM Mol Cell Endocrinol; 1987 Feb; 49(2-3):181-8. PubMed ID: 3556753 [TBL] [Abstract][Full Text] [Related]
20. Length of acute exposure to insulin regulates the rate of deactivation of stimulated glucose transport in isolated rat adipocytes. Ciaraldi TP; Olefsky JM Endocrinology; 1983 Nov; 113(5):1739-45. PubMed ID: 6354696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]