These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38840448)

  • 1. Fast Pure Shift NMR Spectroscopy Using Attention-Assisted Deep Neural Network.
    Zhan H; Liu J; Fang Q; Chen X; Ni Y; Zhou L
    Adv Sci (Weinh); 2024 Aug; 11(29):e2309810. PubMed ID: 38840448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated Pure Shift NMR Spectroscopy with Deep Learning.
    Zhan H; Liu J; Fang Q; Chen X; Hu L
    Anal Chem; 2024 Jan; 96(4):1515-1521. PubMed ID: 38232235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Acquisition of High-Quality Nuclear Magnetic Resonance Pure Shift Spectroscopy via a Deep Neural Network.
    Zheng X; Yang Z; Yang C; Shi X; Luo Y; Luo J; Zeng Q; Lin Y; Chen Z
    J Phys Chem Lett; 2022 Mar; 13(9):2101-2106. PubMed ID: 35225613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Fast Pure Shift NMR and GEMSTONE-Based Selective TOCSY for Efficient NMR Analysis of Complex Systems.
    Zhan H; Liu J; Fang Q; Huang Y; Chen X; Ni Y; Zhou L; Chen Z
    Anal Chem; 2024 Aug; 96(33):13742-13748. PubMed ID: 39115999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated Nuclear Magnetic Resonance Spectroscopy with Deep Learning.
    Qu X; Huang Y; Lu H; Qiu T; Guo D; Agback T; Orekhov V; Chen Z
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10297-10300. PubMed ID: 31490596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast reconstruction of non-uniform sampling multidimensional NMR spectroscopy via a deep neural network.
    Luo J; Zeng Q; Wu K; Lin Y
    J Magn Reson; 2020 Aug; 317():106772. PubMed ID: 32589585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Probing of Heterogeneous Samples by Spatially Selective Pure Shift NMR Spectroscopy.
    Zhan H; Huang Y; Chen Z
    J Phys Chem Lett; 2019 Dec; 10(23):7356-7361. PubMed ID: 31718190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplet analysis by strong-coupling-artifact-suppression 2D J-resolved NMR spectroscopy.
    Zhan H; Zhan F; Gao C; Lin E; Huang C; Lin X; Huang Y; Chen Z
    J Chem Phys; 2021 Jul; 155(3):034202. PubMed ID: 34293873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra.
    Hansen DF
    J Biomol NMR; 2019 Nov; 73(10-11):577-585. PubMed ID: 31292846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid elucidation of chemical shift correlations in complex NMR spectra of organic molecules: Two-dimensional Hadamard pure shift NMR spectroscopy.
    Kakita VMR; Kupče Ē; Bharatam J; Hosur RV
    J Magn Reson; 2018 Aug; 293():77-81. PubMed ID: 29908413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular NMR spectroscopy in the era of artificial intelligence.
    Shukla VK; Heller GT; Hansen DF
    Structure; 2023 Nov; 31(11):1360-1374. PubMed ID: 37848030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous determination of multiple coupling networks by high-resolution 2D J-edited NMR spectroscopy.
    Zhan H; Huang C; Gao C; Lin E; Huang Y; Chen Z
    Anal Chim Acta; 2021 Nov; 1185():339055. PubMed ID: 34711310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-assisted preclinical MR fingerprinting for sub-millimeter T
    Gu Y; Pan Y; Fang Z; Ma L; Zhu Y; Androjna C; Zhong K; Yu X; Shen D
    Magn Reson Med; 2024 Mar; 91(3):1149-1164. PubMed ID: 37929695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time homonuclear broadband and band-selective decoupled pure-shift ROESY.
    Kakita VM; Bharatam J
    Magn Reson Chem; 2014 Jul; 52(7):389-94. PubMed ID: 24777641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring Conformational Changes in an Enzyme Conversion Inhibitor Using Pure Shift Exchange NMR Spectroscopy.
    Aloui G; Bouabdallah S; Baltaze JP; Pucheta JEH; Touil S; Farjon J; Giraud N
    Chemphyschem; 2019 Jul; 20(13):1738-1746. PubMed ID: 31033157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EFG-CS: Predicting chemical shifts from amino acid sequences with protein structure prediction using machine learning and deep learning models.
    Gu X; Myung Y; Rodrigues CHM; Ascher DB
    Protein Sci; 2024 Aug; 33(8):e5096. PubMed ID: 38979954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Methodology for Obtaining Ultraclean Pure Shift Proton Nuclear Magnetic Resonance Spectra.
    Yang Z; Zheng X; Gao X; Zeng Q; Yang C; Luo J; Zhan C; Lin Y
    J Phys Chem Lett; 2023 Apr; 14(14):3397-3402. PubMed ID: 36999661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A General Reconstruction Method for Multidimensional Sparse Sampling Nuclear Magnetic Resonance Spectroscopy.
    Lin E; Bai Z; Yuan Y; Chen Z; Yang Y; Huang Y; Chen Z
    J Phys Chem Lett; 2021 Nov; 12(43):10622-10630. PubMed ID: 34699231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution 2-D NMR spectroscopy based on the Radon transform and pure shift technique for studying chemical shifts perturbations.
    Chen J; Zeng Q; Tian D; Lin Y; Chen Z
    Magn Reson Chem; 2021 Mar; 59(3):346-353. PubMed ID: 31967670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling the Fast Alkali-Ion Dynamics in Paramagnetic Battery Materials Combined with NMR and Deep-Potential Molecular Dynamics Simulation.
    Lin M; Liu X; Xiang Y; Wang F; Liu Y; Fu R; Cheng J; Yang Y
    Angew Chem Int Ed Engl; 2021 May; 60(22):12547-12553. PubMed ID: 33725391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.