These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38840525)

  • 1. Kinetics of Strand Displacement Reaction with Acyclic Artificial Nucleic Acids.
    Makino K; Sugiyama I; Asanuma H; Kashida H
    Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202319864. PubMed ID: 38840525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stable duplex formation by artificial nucleic acids acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) with acyclic scaffolds.
    Murayama K; Tanaka Y; Toda T; Kashida H; Asanuma H
    Chemistry; 2013 Oct; 19(42):14151-8. PubMed ID: 24038212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl group configuration on acyclic threoninol nucleic acids (
    Murayama K; Kashida H; Asanuma H
    Org Biomol Chem; 2022 May; 20(20):4115-4122. PubMed ID: 35274662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpectedly stable homopurine parallel triplex of SNA:RNA*SNA and L-
    Kamiya Y; Lao S; Ariyoshi J; Sato F; Asanuma H
    Chem Commun (Camb); 2024 Jan; 60(10):1257-1260. PubMed ID: 38175608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acyclic L-threoninol nucleic acid (L-aTNA) with suitable structural rigidity cross-pairs with DNA and RNA.
    Murayama K; Kashida H; Asanuma H
    Chem Commun (Camb); 2015 Apr; 51(30):6500-3. PubMed ID: 25633432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthogonal Amplification Circuits Composed of Acyclic Nucleic Acids Enable RNA Detection.
    Chen Y; Nagao R; Murayama K; Asanuma H
    J Am Chem Soc; 2022 Apr; 144(13):5887-5892. PubMed ID: 35258290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toehold-Mediated Strand Displacement in a Triplex Forming Nucleic Acid Clamp for Reversible Regulation of Polymerase Activity and Protein Expression.
    Nguyen TJD; Manuguerra I; Kumar V; Gothelf KV
    Chemistry; 2019 Sep; 25(53):12303-12307. PubMed ID: 31373735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Pyrene-Modified Serinol Nucleic Acid Nanostructure Converts the Chirality of Threoninol Nucleic Acids into Circularly Polarized Luminescence Signals.
    Kashida H; Nishikawa K; Ito Y; Murayama K; Hayashi I; Kakuta T; Ogoshi T; Asanuma H
    Chemistry; 2021 Oct; 27(59):14582-14585. PubMed ID: 34472671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Ultrasmall 3D Architectures of (l)-Acyclic Threoninol Nucleic Acids with High Thermal and Serum Stability.
    Skaanning MK; Bønnelykke J; Nijenhuis MAD; Samanta A; Smidt JM; Gothelf KV
    J Am Chem Soc; 2024 Jul; 146(29):20141-20146. PubMed ID: 38982685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly stable triple helix formation by homopyrimidine (L)-acyclic threoninol nucleic acids with single stranded DNA and RNA.
    Kumar V; Kesavan V; Gothelf KV
    Org Biomol Chem; 2015 Feb; 13(8):2366-74. PubMed ID: 25564220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Chemical Ligation of DNA and
    Okita H; Kondo S; Murayama K; Asanuma H
    J Am Chem Soc; 2023 Aug; 145(32):17872-17880. PubMed ID: 37466125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonenzymatic polymerase-like template-directed synthesis of acyclic L-threoninol nucleic acid.
    Murayama K; Okita H; Kuriki T; Asanuma H
    Nat Commun; 2021 Feb; 12(1):804. PubMed ID: 33547322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xeno nucleic acids (XNAs) having non-ribose scaffolds with unique supramolecular properties.
    Asanuma H; Kamiya Y; Kashida H; Murayama K
    Chem Commun (Camb); 2022 Mar; 58(25):3993-4004. PubMed ID: 35107445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of i-motifs from acyclic (l)-threoninol nucleic acids.
    Kumar V; Nguyen TJD; Palmfeldt J; Gothelf KV
    Org Biomol Chem; 2019 Sep; 17(33):7655-7659. PubMed ID: 31360984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpectedly stable artificial duplex from flexible acyclic threoninol.
    Asanuma H; Toda T; Murayama K; Liang X; Kashida H
    J Am Chem Soc; 2010 Oct; 132(42):14702-3. PubMed ID: 20886877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the RNA Interference Activity Using Central Mismatched siRNAs and Acyclic Threoninol Nucleic Acids (aTNA) Units.
    Alagia A; Terrazas M; Eritja R
    Molecules; 2015 Apr; 20(5):7602-19. PubMed ID: 25919280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized Acyclic (l)-Threoninol Nucleic Acid Four-Way Junction with High Stability In Vitro and In Vivo.
    Märcher A; Kumar V; Andersen VL; El-Chami K; Nguyen TJD; Skaanning MK; Rudnik-Jansen I; Nielsen JS; Howard KA; Kjems J; Gothelf KV
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202115275. PubMed ID: 35352451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrastrand backbone-nucleobase interactions stabilize unwound right-handed helical structures of heteroduplexes of L-aTNA/RNA and SNA/RNA.
    Kamiya Y; Satoh T; Kodama A; Suzuki T; Murayama K; Kashida H; Uchiyama S; Kato K; Asanuma H
    Commun Chem; 2020 Nov; 3(1):156. PubMed ID: 36703369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of nucleic acid toehold mediated strand displacement (TMSD) reaction model and its applications in cell environment.
    Tang L; Luo T; Fan S; Liu Y; Song J
    Biomater Sci; 2023 Jul; 11(15):5060-5077. PubMed ID: 37260180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of stability and activity of siRNA by terminal substitution with serinol nucleic acid (SNA).
    Kamiya Y; Takai J; Ito H; Murayama K; Kashida H; Asanuma H
    Chembiochem; 2014 Nov; 15(17):2549-55. PubMed ID: 25233814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.