These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38840798)

  • 1. An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic.
    Abgrall R; Nassajian Mojarrad F
    Commun Appl Math Comput; 2024; 6(2):963-991. PubMed ID: 38840798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unified preserving properties of kinetic schemes.
    Guo Z; Li J; Xu K
    Phys Rev E; 2023 Feb; 107(2-2):025301. PubMed ID: 36932543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas kinetic flux solver based high-order finite-volume method for simulation of two-dimensional compressible flows.
    Yang LM; Shu C; Chen Z; Liu YY; Wu J; Shen X
    Phys Rev E; 2021 Jul; 104(1-2):015305. PubMed ID: 34412237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete unified gas kinetic scheme for all Knudsen number flows. IV. Strongly inhomogeneous fluids.
    Shan B; Wang P; Zhang Y; Guo Z
    Phys Rev E; 2020 Apr; 101(4-1):043303. PubMed ID: 32422810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case.
    Guo Z; Xu K; Wang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033305. PubMed ID: 24125383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplification of the unified gas kinetic scheme.
    Chen S; Guo Z; Xu K
    Phys Rev E; 2016 Aug; 94(2-1):023313. PubMed ID: 27627418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows.
    Liu S; Cao J; Zhong C
    Phys Rev E; 2020 Sep; 102(3-1):033310. PubMed ID: 33075992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers.
    Zhang YT; Shi J; Shu CW; Zhou Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046709. PubMed ID: 14683081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Well-balanced compressible cut-cell simulation of atmospheric flow.
    Klein R; Bates KR; Nikiforakis N
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4559-75. PubMed ID: 19840981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-order semi-Lagrangian kinetic scheme for compressible turbulence.
    Wilde D; Krämer A; Reith D; Foysi H
    Phys Rev E; 2021 Aug; 104(2-2):025301. PubMed ID: 34525552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence.
    Liao W; Peng Y; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046702. PubMed ID: 19905477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Von Neumann Stability Analysis of DG-Like and P
    Balsara DS; Käppeli R
    Commun Appl Math Comput; 2022; 4(3):945-985. PubMed ID: 35855893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knudsen Number Effects on Two-Dimensional Rayleigh-Taylor Instability in Compressible Fluid: Based on a Discrete Boltzmann Method.
    Ye H; Lai H; Li D; Gan Y; Lin C; Chen L; Xu A
    Entropy (Basel); 2020 Apr; 22(5):. PubMed ID: 33286273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables.
    Zanotti O; Dumbser M
    Comput Astrophys Cosmol; 2016; 3(1):1. PubMed ID: 31149558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbational blowup solutions to the compressible Euler equations with damping.
    Cheung KL
    Springerplus; 2016; 5():196. PubMed ID: 27026892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coefficient datasets for high-order, stable, and conservative boundary schemes for central and compact finite differences.
    Brady PT; Livescu D
    Data Brief; 2019 Aug; 25():104086. PubMed ID: 31294052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics.
    Dumbser M; Balsara DS; Tavelli M; Fambri F
    Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymptotic equivalence of forcing terms in the lattice Boltzmann method within second-order accuracy.
    Suzuki K; Inamuro T; Yoshino M
    Phys Rev E; 2020 Jul; 102(1-1):013308. PubMed ID: 32794911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From
    Bolis A; Cantwell CD; Kirby RM; Sherwin SJ
    Int J Numer Methods Fluids; 2014 Jul; 75(8):591-607. PubMed ID: 25892840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.