These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38841209)

  • 1. Investigating visual navigation using spiking neural network models of the insect mushroom bodies.
    Jesusanmi OO; Amin AA; Domcsek N; Knight JC; Philippides A; Nowotny T; Graham P
    Front Physiol; 2024; 15():1379977. PubMed ID: 38841209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network model for familiarity and context learning during honeybee foraging flights.
    Müller J; Nawrot M; Menzel R; Landgraf T
    Biol Cybern; 2018 Apr; 112(1-2):113-126. PubMed ID: 28917001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of ant route navigation driven by scene familiarity.
    Baddeley B; Graham P; Husbands P; Philippides A
    PLoS Comput Biol; 2012 Jan; 8(1):e1002336. PubMed ID: 22241975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments.
    Ardin P; Peng F; Mangan M; Lagogiannis K; Webb B
    PLoS Comput Biol; 2016 Feb; 12(2):e1004683. PubMed ID: 26866692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic sequence learning with an event camera on routes through vegetation.
    Zhu L; Mangan M; Webb B
    Sci Robot; 2023 Sep; 8(82):eadg3679. PubMed ID: 37756384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertical Lobes of the Mushroom Bodies Are Essential for View-Based Navigation in Australian Myrmecia Ants.
    Kamhi JF; Barron AB; Narendra A
    Curr Biol; 2020 Sep; 30(17):3432-3437.e3. PubMed ID: 32707060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision for navigation: What can we learn from ants?
    Graham P; Philippides A
    Arthropod Struct Dev; 2017 Sep; 46(5):718-722. PubMed ID: 28751148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Running paths to nowhere: repetition of routes shows how navigating ants modulate online the weights accorded to cues.
    Wystrach A; Schwarz S; Graham P; Cheng K
    Anim Cogn; 2019 Mar; 22(2):213-222. PubMed ID: 30684062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
    Arena P; Patané L; Stornanti V; Termini PS; Zäpf B; Strauss R
    Neural Netw; 2013 May; 41():202-11. PubMed ID: 23246431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Aversive and Memory Trace Learning during Route Navigation in Desert Ants.
    Wystrach A; Buehlmann C; Schwarz S; Cheng K; Graham P
    Curr Biol; 2020 May; 30(10):1927-1933.e2. PubMed ID: 32275874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A spiking neural program for sensorimotor control during foraging in flying insects.
    Rapp H; Nawrot MP
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28412-28421. PubMed ID: 33122439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does the insect central complex use mushroom body output for steering?
    Collett M; Collett TS
    Curr Biol; 2018 Jul; 28(13):R733-R734. PubMed ID: 29990452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mushroom Bodies Are Required for Learned Visual Navigation, but Not for Innate Visual Behavior, in Ants.
    Buehlmann C; Wozniak B; Goulard R; Webb B; Graham P; Niven JE
    Curr Biol; 2020 Sep; 30(17):3438-3443.e2. PubMed ID: 32707069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous Visual Navigation of an Indoor Environment Using a Parsimonious, Insect Inspired Familiarity Algorithm.
    Gaffin DD; Brayfield BP
    PLoS One; 2016; 11(4):e0153706. PubMed ID: 27119720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments.
    George TM; Rastogi M; de Cothi W; Clopath C; Stachenfeld K; Barry C
    Elife; 2024 Feb; 13():. PubMed ID: 38334473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opponent processes in visual memories: A model of attraction and repulsion in navigating insects' mushroom bodies.
    Le Möel F; Wystrach A
    PLoS Comput Biol; 2020 Feb; 16(2):e1007631. PubMed ID: 32023241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A decentralised neural model explaining optimal integration of navigational strategies in insects.
    Sun X; Yue S; Mangan M
    Elife; 2020 Jun; 9():. PubMed ID: 32589143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fly-Inspired Mushroom Bodies Model for Sensory-Motor Control Through Sequence and Subsequence Learning.
    Arena P; Calí M; Patané L; Portera A; Strauss R
    Int J Neural Syst; 2016 Sep; 26(6):1650035. PubMed ID: 27354193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the insect Mushroom Bodies: Application to sequence learning.
    Arena P; Calí M; Patané L; Portera A; Strauss R
    Neural Netw; 2015 Jul; 67():37-53. PubMed ID: 25864122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snapshots in ants? New interpretations of paradigmatic experiments.
    Wystrach A; Mangan M; Philippides A; Graham P
    J Exp Biol; 2013 May; 216(Pt 10):1766-70. PubMed ID: 23348949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.