BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38841473)

  • 1. A deep learning approach based on graphs to detect plantation lines.
    Gonçalves DN; Junior JM; Arruda MDS; Fernandes VJM; Ramos APM; Furuya DEG; Osco LP; He H; Jorge LAC; Li J; Melgani F; Pistori H; Gonçalves WN
    Heliyon; 2024 Jun; 10(11):e31730. PubMed ID: 38841473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vehicle Detection From UAV Imagery With Deep Learning: A Review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6047-6067. PubMed ID: 34029200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RGB-T Salient Object Detection via Fusing Multi-level CNN Features.
    Zhang Q; Huang N; Yao L; Zhang D; Shan C; Han J
    IEEE Trans Image Process; 2019 Dec; ():. PubMed ID: 31869791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning techniques to classify agricultural crops through UAV imagery: a review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    Neural Comput Appl; 2022; 34(12):9511-9536. PubMed ID: 35281624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-embedding of edges and nodes with deep graph convolutional neural networks.
    Zhou Y; Huo H; Hou Z; Bu L; Mao J; Wang Y; Lv X; Bu F
    Sci Rep; 2023 Oct; 13(1):16966. PubMed ID: 37807013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning.
    Tian F; Vieira CC; Zhou J; Zhou J; Chen P
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery.
    Kattenborn T; Eichel J; Fassnacht FE
    Sci Rep; 2019 Nov; 9(1):17656. PubMed ID: 31776370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image.
    Chen W; Li Y; Zhao Z
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning.
    Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-García B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X
    Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery.
    Hong SJ; Han Y; Kim SY; Lee AY; Kim G
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification.
    Petrovska B; Zdravevski E; Lameski P; Corizzo R; Štajduhar I; Lerga J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32674254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV).
    Neupane B; Horanont T; Hung ND
    PLoS One; 2019; 14(10):e0223906. PubMed ID: 31622450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.
    Zhong J; Lei T; Yao G
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery.
    Li J; Li Y; Qiao J; Li L; Wang X; Yao J; Liao G
    Front Plant Sci; 2023; 14():1101143. PubMed ID: 36798713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tiny Vehicle Detection for Mid-to-High Altitude UAV Images Based on Visual Attention and Spatial-Temporal Information.
    Yu R; Li H; Jiang Y; Zhang B; Wang Y
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data.
    Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery.
    Castro W; Marcato Junior J; Polidoro C; Osco LP; Gonçalves W; Rodrigues L; Santos M; Jank L; Barrios S; Valle C; Simeão R; Carromeu C; Silveira E; Jorge LAC; Matsubara E
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32858803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RGB-D salient object detection via convolutional capsule network based on feature extraction and integration.
    Xu K; Guo J
    Sci Rep; 2023 Oct; 13(1):17652. PubMed ID: 37848501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.