These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38842118)

  • 1. Double Droplets Impact an Inclined Superhydrophobic Surface.
    Gao SR; Huang XY; Liu Z; Sun JJ; Yang YR; Wang XD
    Langmuir; 2024 Jun; 40(24):12818-12827. PubMed ID: 38842118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rebound Behaviors of Multiple Droplets Simultaneously Impacting a Superhydrophobic Surface.
    Gao SR; Jin JX; Wei BJ; Zhang LZ; Yang YR; Wang XD; Lee DJ
    Langmuir; 2021 Sep; 37(38):11233-11241. PubMed ID: 34528810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact Dynamics of a Droplet on Superhydrophobic Cylinders Structured with a Macro Ridge.
    Zhang LZ; Chen X; Yang YR; Wang XD
    Langmuir; 2023 May; 39(18):6375-6386. PubMed ID: 37092810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface.
    Xu H; Chang C; Yi N; Tao P; Song C; Wu J; Deng T; Shang W
    ACS Omega; 2019 Oct; 4(18):17615-17622. PubMed ID: 31681868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Asymmetry on the Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces.
    Chen X; Zhang LZ; Wang YF; Jin JX; Wang YB; Yang YR; Gao SR; Zheng SF; Wang XD; Lee DJ
    Langmuir; 2023 Dec; 39(51):19037-19047. PubMed ID: 38096493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes.
    Kumar A; Tripathy A; Nam Y; Lee C; Sen P
    Soft Matter; 2018 Feb; 14(9):1571-1580. PubMed ID: 29355280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the Bouncing Behaviors of a Non-Newtonian Fluid Droplet Impacting on a Hydrophobic Surface.
    Liu H; Zheng N; Chen J; Yang D; Wang J
    Langmuir; 2023 Mar; 39(11):3979-3993. PubMed ID: 36897569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced detachment of coalescing droplets on superhydrophobic surfaces.
    Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A
    Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact Time of a Droplet Off-Centered Impacting a Superhydrophobic Cylinder.
    Zhang LZ; Chen X; Wang YF; Yang YR; Zheng SF; Lee DJ; Wang XD
    Langmuir; 2023 Nov; 39(45):16023-16034. PubMed ID: 37916520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spreading, Breakup, and Rebound Behaviors of Compound Droplets Impacting on Microstructured Substrates.
    Farokhirad S; Solanky P; Shad MM
    Langmuir; 2023 Mar; 39(10):3645-3655. PubMed ID: 36853952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Wettability on the Collision Behavior of Acoustically Excited Droplets.
    Guo Q; Zhang J; Li D; Yu H
    Langmuir; 2023 May; 39(21):7408-7417. PubMed ID: 37186956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Droplet Rebound Behavior with Contact Time Control on a Flexible and Superhydrophobic Film.
    Ding S; Dai Z; Chen G; Lei M; Song Q; Gao Y; Zhou Y; Zhou B
    Langmuir; 2022 Mar; 38(9):2942-2953. PubMed ID: 35200028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of Droplets Impacting on Aerogel, Liquid Infused, and Liquid-Like Solid Surfaces.
    Dawson J; Coaster S; Han R; Gausden J; Liu H; McHale G; Chen J
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2301-2312. PubMed ID: 36580541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drop impact on inclined superhydrophobic surfaces.
    LeClear S; LeClear J; Abhijeet ; Park KC; Choi W
    J Colloid Interface Sci; 2016 Jan; 461():114-121. PubMed ID: 26397917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.