These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38842228)

  • 1. Design and Stability Analysis of an Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Pacemaker Controller in MATLAB Simulink.
    Aghdam AD; Dabanloo NJ; Rahatabad FN; Maghooli K
    J Long Term Eff Med Implants; 2024; 34(4):1-13. PubMed ID: 38842228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interval Type 2 Adaptive Neuro-Fuzzy Inference System-Based Artificial Pacemaker Design and Stability Analysis.
    Aghdam AD; Dabanloo NJ; Rahatabad FN; Maghooli K
    J Long Term Eff Med Implants; 2024; 34(1):9-19. PubMed ID: 37938200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a new neutron energy spectrum unfolding code based on an Adaptive Neuro-Fuzzy Inference System (ANFIS).
    Hosseini SA; Esmaili Paeen Afrakoti I
    J Radiat Res; 2018 Jul; 59(4):436-441. PubMed ID: 29351656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.
    Heddam S
    Environ Monit Assess; 2014 Jan; 186(1):597-619. PubMed ID: 24057665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models.
    Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic detection of erthemato-squamous diseases using adaptive neuro- fuzzy inference systems.
    Ubeyli ED; Güler I
    Comput Biol Med; 2005 Jun; 35(5):421-433. PubMed ID: 16136651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative assessment of deep belief network and hybrid adaptive neuro-fuzzy inference system model based on a meta-heuristic optimization algorithm for precise predictions of the potential evapotranspiration.
    Akiner ME; Ghasri M
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42719-42749. PubMed ID: 38879646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taxonomy of Adaptive Neuro-Fuzzy Inference System in Modern Engineering Sciences.
    Chopra S; Dhiman G; Sharma A; Shabaz M; Shukla P; Arora M
    Comput Intell Neurosci; 2021; 2021():6455592. PubMed ID: 34527042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seizure prediction using adaptive neuro-fuzzy inference system.
    Rabbi AF; Azinfar L; Fazel-Rezai R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2100-3. PubMed ID: 24110134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.
    Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V
    Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
    Güler I; Ubeyli ED
    J Neurosci Methods; 2005 Oct; 148(2):113-21. PubMed ID: 16054702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents.
    Ubeyli ED
    Comput Methods Programs Biomed; 2009 Mar; 93(3):313-21. PubMed ID: 19084286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction.
    Ahmadianfar I; Shirvani-Hosseini S; He J; Samadi-Koucheksaraee A; Yaseen ZM
    Sci Rep; 2022 Mar; 12(1):4934. PubMed ID: 35322087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transductive neuro-fuzzy controller: application to a drilling process.
    Gajate A; Haber RE; Vega PI; Alique JR
    IEEE Trans Neural Netw; 2010 Jul; 21(7):1158-67. PubMed ID: 20659865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines.
    Sun ZL; Au KF; Choi TM
    IEEE Trans Syst Man Cybern B Cybern; 2007 Oct; 37(5):1321-31. PubMed ID: 17926712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction.
    Subasi A
    Comput Biol Med; 2007 Feb; 37(2):227-44. PubMed ID: 16480706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nonlinear control method based on ANFIS and multiple models for a class of SISO nonlinear systems and its application.
    Zhang Y; Chai T; Wang H
    IEEE Trans Neural Netw; 2011 Nov; 22(11):1783-95. PubMed ID: 21965199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubbly flow prediction with randomized neural cells artificial learning and fuzzy systems based on k-ε turbulence and Eulerian model data set.
    Babanezhad M; Pishnamazi M; Marjani A; Shirazian S
    Sci Rep; 2020 Aug; 10(1):13837. PubMed ID: 32796869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.