BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38842262)

  • 1. Porous Semiconducting Polymer Nanoparticles as Intracellular Biophotonic Mediators to Modulate the Reactive Oxygen Species Balance.
    Criado-Gonzalez M; Marzuoli C; Bondi L; Gutierrez-Fernandez E; Tullii G; Lagonegro P; Sanz O; Cramer T; Antognazza MR; Mecerreyes D
    Nano Lett; 2024 Jun; 24(24):7244-51. PubMed ID: 38842262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconducting Polymer Nanoporous Thin Films as a Tool to Regulate Intracellular ROS Balance in Endothelial Cells.
    Criado-Gonzalez M; Bondi L; Marzuoli C; Gutierrez-Fernandez E; Tullii G; Ronchi C; Gabirondo E; Sardon H; Rapino S; Malferrari M; Cramer T; Antognazza MR; Mecerreyes D
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):35973-35985. PubMed ID: 37467460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic Activity of Polymer Nanoparticles Modulates Intracellular Calcium Dynamics and Reactive Oxygen Species in HEK-293 Cells.
    Bossio C; Abdel Aziz I; Tullii G; Zucchetti E; Debellis D; Zangoli M; Di Maria F; Lanzani G; Antognazza MR
    Front Bioeng Biotechnol; 2018; 6():114. PubMed ID: 30211158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electro-spun tri-component polymer biomaterial with optoelectronic properties for neuronal differentiation.
    Yuan B; Aziz MRF; Li S; Wu J; Li D; Li RK
    Acta Biomater; 2022 Feb; 139():82-90. PubMed ID: 34082104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copolymers of Gelatin-
    Sun X; Chan EWC; Chen Q; Kirby N; Yang J; Mata JP; Kingston RL; Barker D; Domigan L; Travas-Sejdic J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38668737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal Biophotonics of Semiconducting Polymer Nanoparticles.
    Jiang Y; Pu K
    Acc Chem Res; 2018 Aug; 51(8):1840-1849. PubMed ID: 30074381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Triggered Electron Transfer between a Conjugated Polymer and Cytochrome C for Optical Modulation of Redox Signaling.
    Abdel Aziz I; Malferrari M; Roggiani F; Tullii G; Rapino S; Antognazza MR
    iScience; 2020 May; 23(5):101091. PubMed ID: 32438318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugated polymer P3HT-Au hybrid nanostructures for enhancing photocatalytic activity.
    Jana B; Bhattacharyya S; Patra A
    Phys Chem Chem Phys; 2015 Jun; 17(23):15392-9. PubMed ID: 26008182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy.
    Li J; Rao J; Pu K
    Biomaterials; 2018 Feb; 155():217-235. PubMed ID: 29190479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(3-hexylthiophene) nanostructured materials for organic electronics applications.
    Bhatt MP; Magurudeniya HD; Rainbolt EA; Huang P; Dissanayake DS; Biewer MC; Stefan MC
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1033-50. PubMed ID: 24749411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy.
    Zhu H; Fang Y; Miao Q; Qi X; Ding D; Chen P; Pu K
    ACS Nano; 2017 Sep; 11(9):8998-9009. PubMed ID: 28841279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging.
    Zhen X; Feng X; Xie C; Zheng Y; Pu K
    Biomaterials; 2017 May; 127():97-106. PubMed ID: 28284105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular structures fabricated through the epitaxial growth of semiconducting poly(3-hexylthiophene) on carbon nanotubes as building blocks of nanoscale electronics.
    Misra RD; Depan D; Challa VS; Shah JS
    Phys Chem Chem Phys; 2014 Sep; 16(36):19122-9. PubMed ID: 25101805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconducting Polymer Interfaces for Electrochemically Assisted Mercury Remediation.
    Candeago R; Kim K; Vapnik H; Cotty S; Aubin M; Berensmeier S; Kushima A; Su X
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49713-49722. PubMed ID: 33079513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species.
    Zhen X; Zhang C; Xie C; Miao Q; Lim KL; Pu K
    ACS Nano; 2016 Jun; 10(6):6400-9. PubMed ID: 27299477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Photochemical Properties of Polythiophene Polyelectrolyte Soft Aggregates with Sodium Dodecyl Sulfate for Antimicrobial Activity.
    Livshits MY; Yang J; Maghsoodi F; Scheberl A; Greer SM; Khalil MI; Strach E; Brown D; Stein BW; Reimhult E; Rack JJ; Chi E; Whitten DG
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):55953-55965. PubMed ID: 34788015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared absorbing semiconducting polymer nanomedicines for cancer therapy.
    Li M; Zhao M; Li J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(3):e1865. PubMed ID: 36284504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stable Core-Shell Structured Semiconducting Polymer Nanoparticles for FRET-Based Intracellular pH Imaging.
    Bao B; Su P; Yang Z; Zhai X; Zhang J; Xu Y; Liu Y; Gu B; Wang L
    Adv Healthc Mater; 2019 Jul; 8(14):e1900255. PubMed ID: 31148405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(3-hexylthiophene) Nanoparticles Containing Thiophene-S,S-dioxide: Tuning of Dimensions, Optical and Redox Properties, and Charge Separation under Illumination.
    Di Maria F; Zanelli A; Liscio A; Kovtun A; Salatelli E; Mazzaro R; Morandi V; Bergamini G; Shaffer A; Rozen S
    ACS Nano; 2017 Feb; 11(2):1991-1999. PubMed ID: 28152312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular Synthesis of Semiconducting Graft Copolymers to Achieve "Clickable" Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting.
    Creamer A; Fiego AL; Agliano A; Prados-Martin L; Høgset H; Najer A; Richards DA; Wojciechowski JP; Foote JEJ; Kim N; Monahan A; Tang J; Shamsabadi A; Rochet LNC; Thanasi IA; de la Ballina LR; Rapley CL; Turnock S; Love EA; Bugeon L; Dallman MJ; Heeney M; Kramer-Marek G; Chudasama V; Fenaroli F; Stevens MM
    Adv Mater; 2024 May; 36(20):e2300413. PubMed ID: 36905683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.