These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38842416)
1. Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress. Bianchetti G; Clouet V; Legeai F; Baron C; Gazengel K; Vu BL; Baud S; To A; Manzanares-Dauleux MJ; Buitink J; Nesi N Physiol Plant; 2024; 176(1):e14130. PubMed ID: 38842416 [TBL] [Abstract][Full Text] [Related]
2. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). Hatzig SV; Nuppenau JN; Snowdon RJ; Schießl SV BMC Plant Biol; 2018 Nov; 18(1):297. PubMed ID: 30470194 [TBL] [Abstract][Full Text] [Related]
3. Dataset for the metabolic and physiological characterization of seeds from oilseed rape ( Bianchetti G; Baron C; Carrillo A; Berardocco S; Marnet N; Wagner MH; Demilly D; Ducournau S; Manzanares-Dauleux MJ; Cahérec FL; Buitink J; Nesi N Data Brief; 2021 Aug; 37():107247. PubMed ID: 34277900 [TBL] [Abstract][Full Text] [Related]
4. RNA sequencing data for responses to drought stress and/or clubroot infection in developing seeds of Bianchetti G; Clouet V; Legeai F; Baron C; Gazengel K; Carrillo A; Manzanares-Dauleux MJ; Buitink J; Nesi N Data Brief; 2021 Oct; 38():107392. PubMed ID: 34611536 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide identification of the ICS family genes and its role in resistance to Plasmodiophora brassicae in Brassica napus L. Xue Y; Qian F; Guan W; Ji G; Geng R; Li M; Li L; Ullah N; Zhang C; Cai G; Wu X Int J Biol Macromol; 2024 Jun; 270(Pt 1):132206. PubMed ID: 38735610 [TBL] [Abstract][Full Text] [Related]
6. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. Weselake RJ; Shah S; Tang M; Quant PA; Snyder CL; Furukawa-Stoffer TL; Zhu W; Taylor DC; Zou J; Kumar A; Hall L; Laroche A; Rakow G; Raney P; Moloney MM; Harwood JL J Exp Bot; 2008; 59(13):3543-9. PubMed ID: 18703491 [TBL] [Abstract][Full Text] [Related]
7. Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Zhu L; Zhao X; Xu Y; Wang Q; Wang H; Wu D; Jiang L Theor Appl Genet; 2020 Oct; 133(10):2839-2852. PubMed ID: 32617616 [TBL] [Abstract][Full Text] [Related]
8. Muthusamy M; Kim JY; Yoon EK; Kim JA; Lee SI Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32276441 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus. Jedličková V; Hejret V; Demko M; Jedlička P; Štefková M; Robert HS BMC Genomics; 2023 May; 24(1):236. PubMed ID: 37142980 [TBL] [Abstract][Full Text] [Related]
10. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
11. Flagellin Induced GABA-shunt improves Drought stress tolerance in Brassica napus L. Palabıyık Ş; Çetinkaya İ; Öztürk TA; Bor M BMC Plant Biol; 2024 Sep; 24(1):864. PubMed ID: 39278927 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification of biotin carboxyl carrier subunits of acetyl-CoA carboxylase in Brassica and their role in stress tolerance in oilseed Brassica napus. Megha S; Wang Z; Kav NNV; Rahman H BMC Genomics; 2022 Oct; 23(1):707. PubMed ID: 36253756 [TBL] [Abstract][Full Text] [Related]
13. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Liang Y; Kang K; Gan L; Ning S; Xiong J; Song S; Xi L; Lai S; Yin Y; Gu J; Xiang J; Li S; Wang B; Li M Plant Biotechnol J; 2019 Nov; 17(11):2123-2142. PubMed ID: 30972883 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage. Liu H; Yang Q; Fan C; Zhao X; Wang X; Zhou Y Plant Sci; 2015 Apr; 233():186-199. PubMed ID: 25711826 [TBL] [Abstract][Full Text] [Related]
16. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress. Babula-Skowrońska D; Ludwików A; Cieśla A; Olejnik A; Cegielska-Taras T; Bartkowiak-Broda I; Sadowski J Plant Mol Biol; 2015 Jul; 88(4-5):445-57. PubMed ID: 26059040 [TBL] [Abstract][Full Text] [Related]
17. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. Reddy PS; Kavi Kishor PB; Seiler C; Kuhlmann M; Eschen-Lippold L; Lee J; Reddy MK; Sreenivasulu N PLoS One; 2014; 9(3):e89125. PubMed ID: 24594978 [TBL] [Abstract][Full Text] [Related]
18. Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae. Verma SS; Rahman MH; Deyholos MK; Basu U; Kav NN PLoS One; 2014; 9(1):e86648. PubMed ID: 24497962 [TBL] [Abstract][Full Text] [Related]
19. Clubroot resistance QTL are modulated by nitrogen input in Brassica napus. Laperche A; Aigu Y; Jubault M; Ollier M; Guichard S; Glory P; Strelkov SE; Gravot A; Manzanares-Dauleux MJ Theor Appl Genet; 2017 Apr; 130(4):669-684. PubMed ID: 28050618 [TBL] [Abstract][Full Text] [Related]
20. Effects of seed priming treatments on the germination and development of two rapeseed (Brassica napus L.) varieties under the co-influence of low temperature and drought. Zhu ZH; Sami A; Xu QQ; Wu LL; Zheng WY; Chen ZP; Jin XZ; Zhang H; Li Y; Yu Y; Zhou KJ PLoS One; 2021; 16(9):e0257236. PubMed ID: 34529689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]