BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38842467)

  • 1. Platinum-Iridium Alloy Nanoparticle Coatings Produced by Electrophoretic Deposition Reduce Impedance in 3D Neural Electrodes.
    Ramesh V; Johny J; Jakobi J; Stuckert R; Rehbock C; Barcikowski S
    Chemphyschem; 2024 Jun; ():e202300623. PubMed ID: 38842467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing in Vitro Impedance and Physico-Chemical Properties of Neural Electrodes by Electrophoretic Deposition of Pt Nanoparticles.
    Koenen S; Rehbock C; Heissler HE; Angelov SD; Schwabe K; Krauss JK; Barcikowski S
    Chemphyschem; 2017 May; 18(9):1108-1117. PubMed ID: 28122149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing Direct and Pulsed-Direct Current Electrophoretic Deposition on Neural Electrodes: Deposition Mechanism and Functional Influence.
    Ramesh V; Rehbock C; Giera B; Karnes JJ; Forien JB; Angelov SD; Schwabe K; Krauss JK; Barcikowski S
    Langmuir; 2021 Aug; ():. PubMed ID: 34357777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Stability of Nano-Coatings on Clinically Applicable Electrodes, Generated by Electrophoretic Deposition.
    Ramesh V; Stratmann N; Schaufler V; Angelov SD; Nordhorn ID; Heissler HE; Martínez-Hincapié R; Čolić V; Rehbock C; Schwabe K; Karst U; Krauss JK; Barcikowski S
    Adv Healthc Mater; 2022 Dec; 11(23):e2102637. PubMed ID: 36148583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical and biological characterization of thin-film platinum-iridium alloy electrode coatings: a chronic in vivo study.
    Dalrymple AN; Huynh M; Nayagam BA; Lee CD; Weiland GR; Petrossians A; J J; Iii W; Fallon JB; Shepherd RK
    J Neural Eng; 2020 Jun; 17(3):036012. PubMed ID: 32408281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of neural stimulating/recording electrodes with high surface area platinum-iridium alloy coatings.
    Petrossians A; Whalen JJ; Weiland JD; Mansfeld F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3001-4. PubMed ID: 22254972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications.
    Dorovskikh SI; Vikulova ES; Kal'nyi DB; Shubin YV; Asanov IP; Maximovskiy EA; Gutakovskii AK; Morozova NB; Basova TV
    J Mater Sci Mater Med; 2019 Jun; 30(6):69. PubMed ID: 31165268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study on the Effect of Substrate Structure on Electrochemical Performance and Stability of Electrodeposited Platinum and Iridium Oxide Coatings for Neural Electrodes.
    Li L; Jiang C; Li L
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: an active in vitro study.
    Dalrymple AN; Huynh M; Robles UA; Marroquin JB; Lee CD; Petrossians A; Whalen JJ; Li D; Parkington HC; Forsythe JS; Green RA; Poole-Warren LA; Shepherd RK; Fallon JB
    J Neural Eng; 2019 Dec; 17(1):016015. PubMed ID: 31652427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Pt nanoparticles-decorated CVD diamond electrode for biosensor applications.
    Song MJ; Kim JH; Lee SK; Lim DS
    Anal Sci; 2011; 27(10):985-9. PubMed ID: 21985922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long term performance of porous platinum coated neural electrodes.
    Leber M; Bhandari R; Mize J; Warren DJ; Shandhi MMH; Solzbacher F; Negi S
    Biomed Microdevices; 2017 Sep; 19(3):62. PubMed ID: 28688070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding charge transfer on the clinically used conical Utah electrode array: charge storage capacity, electrochemical impedance spectroscopy and effective electrode area.
    Harris AR
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33401255
    [No Abstract]   [Full Text] [Related]  

  • 14. Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes.
    Jakobi J; Menéndez-Manjón A; Chakravadhanula VS; Kienle L; Wagener P; Barcikowski S
    Nanotechnology; 2011 Apr; 22(14):145601. PubMed ID: 21346297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis.
    Angelov SD; Koenen S; Jakobi J; Heissler HE; Alam M; Schwabe K; Barcikowski S; Krauss JK
    J Nanobiotechnology; 2016 Jan; 14():3. PubMed ID: 26753543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving cochlear implant properties through conductive hydrogel coatings.
    Hassarati RT; Dueck WF; Tasche C; Carter PM; Poole-Warren LA; Green RA
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):411-8. PubMed ID: 24608692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfobetaine-based ultrathin coatings as effective antifouling layers for implantable neuroprosthetic devices.
    Wellens J; Deschaume O; Putzeys T; Eyley S; Thielemans W; Verhaert N; Bartic C
    Biosens Bioelectron; 2023 Apr; 226():115121. PubMed ID: 36774733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional and morphological properties of platinum-iridium electrodeposited on carbon fiber microelectrodes.
    Della Valle E; Welle EJ; Chestek CA; Weiland JD
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34428753
    [No Abstract]   [Full Text] [Related]  

  • 19. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy.
    Norlin A; Pan J; Leygraf C
    Biomol Eng; 2002 Aug; 19(2-6):67-71. PubMed ID: 12202164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and optimization of microelectrode arrays for in vivo nerve signal recording and stimulation.
    Blau A; Ziegler C; Heyer M; Endres F; Schwitzgebel G; Matthies T; Stieglitz T; Meyer JU; Göpel W
    Biosens Bioelectron; 1997; 12(9-10):883-92. PubMed ID: 9451781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.