These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38842509)

  • 21. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm.
    Song J; Liu G; Jiang J; Zhang P; Liang Y
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method.
    Zhao Z; Peng Z; Yang J
    J Chem Inf Model; 2018 Jul; 58(7):1459-1468. PubMed ID: 29895149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TLCrys: Transfer Learning Based Method for Protein Crystallization Prediction.
    Jin C; Shi Z; Kang C; Lin K; Zhang H
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RAFP-Pred: Robust Prediction of Antifreeze Proteins Using Localized Analysis of n-Peptide Compositions.
    Khan S; Naseem I; Togneri R; Bennamoun M
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):244-250. PubMed ID: 28113406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.
    Suresh V; Parthasarathy S
    Protein Pept Lett; 2014; 21(8):736-42. PubMed ID: 23855661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploiting protein language models for the precise classification of ion channels and ion transporters.
    Ghazikhani H; Butler G
    Proteins; 2024 Aug; 92(8):998-1055. PubMed ID: 38656743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AKIML
    Sun T; Yue X; Zhang G; Lin Q; Chen X; Huang T; Li X; Liu W; Tao Z
    Clin Chim Acta; 2024 Jun; 559():119705. PubMed ID: 38702035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATSE: a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural network and attention mechanism.
    Wei L; Ye X; Xue Y; Sakurai T; Wei L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pLM4Alg: Protein Language Model-Based Predictors for Allergenic Proteins and Peptides.
    Du Z; Xu Y; Liu C; Li Y
    J Agric Food Chem; 2024 Jan; 72(1):752-760. PubMed ID: 38113537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Ensemble Learning Approaches in Healthcare to Enhance the Prediction and Diagnosing Performance: The Workflows, Deployments, and Surveys on the Statistical, Image-Based, and Sequential Datasets.
    Nguyen DK; Lan CH; Chan CL
    Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AbsoluRATE: An in-silico method to predict the aggregation kinetics of native proteins.
    Rawat P; Prabakaran R; Kumar S; Gromiha MM
    Biochim Biophys Acta Proteins Proteom; 2021 Sep; 1869(9):140682. PubMed ID: 34102324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework.
    Gaffar S; Tayara H; Chong KT
    Comput Biol Med; 2024 May; 174():108438. PubMed ID: 38613893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated convolution and self-attention for improving peptide toxicity prediction.
    Jiao S; Ye X; Sakurai T; Zou Q; Liu R
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38696758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction.
    Fang Y; Luo M; Ren Z; Wei L; Wei DQ
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39038935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.