BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38842514)

  • 21. Using ramp-incremental V̇O
    Keir DA; Paterson DH; Kowalchuk JM; Murias JM
    Appl Physiol Nutr Metab; 2018 Sep; 43(9):882-892. PubMed ID: 29570982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translating Ramp V˙O2 into Constant Power Output: A Novel Strategy that Minds the Gap.
    Caen K; Boone J; Bourgois JG; Colosio AL; Pogliaghi S
    Med Sci Sports Exerc; 2020 Sep; 52(9):2020-2028. PubMed ID: 32118695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of prior metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise.
    Brittain CJ; Rossiter HB; Kowalchuk JM; Whipp BJ
    Eur J Appl Physiol; 2001 Dec; 86(2):125-34. PubMed ID: 11822471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The positive effects of priming exercise on oxygen uptake kinetics and high-intensity exercise performance are not magnified by a fast-start pacing strategy in trained cyclists.
    Caritá RA; Greco CC; Denadai BS
    PLoS One; 2014; 9(4):e95202. PubMed ID: 24740278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Priming exercise increases Wingate cycling peak power output.
    Ktenidis CK; Margaritelis NV; Cherouveim ED; Stergiopoulos DC; Malliou VJ; Geladas ND; Nikolaidis MG; Paschalis V
    Eur J Sport Sci; 2021 May; 21(5):705-713. PubMed ID: 32449458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of aerobic fitness on oxygen uptake kinetics in heavy intensity swimming.
    Reis JF; Alves FB; Bruno PM; Vleck V; Millet GP
    Eur J Appl Physiol; 2012 May; 112(5):1689-97. PubMed ID: 21879352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen uptake plateau occurrence depends on oxygen kinetics and oxygen deficit accumulation.
    Niemeyer M; Leithaeuser R; Beneke R
    Scand J Med Sci Sports; 2019 Oct; 29(10):1466-1472. PubMed ID: 31166042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Limitations to exercise tolerance in type 1 diabetes: the role of pulmonary oxygen uptake kinetics and priming exercise.
    Goulding RP; Roche DM; Scott SN; Koga S; Weston PJ; Marwood S
    J Appl Physiol (1985); 2020 May; 128(5):1299-1309. PubMed ID: 32213117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prior heavy-intensity exercise's enhancement of oxygen-uptake kinetics and short-term high-intensity exercise performance independent of aerobic-training status.
    Caritá RA; Greco CC; Denadai BS
    Int J Sports Physiol Perform; 2015 Apr; 10(3):339-45. PubMed ID: 25203458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of priming exercise on VO2 kinetics and the power-duration relationship.
    Burnley M; Davison G; Baker JR
    Med Sci Sports Exerc; 2011 Nov; 43(11):2171-9. PubMed ID: 21552161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power Reserve at Intolerance in Ramp-Incremental Exercise Is Dependent on Incrementation Rate.
    Davies MJ; Lyall GK; Benson AP; Cannon DT; Birch KM; Rossiter HB; Ferguson C
    Med Sci Sports Exerc; 2021 Aug; 53(8):1606-1614. PubMed ID: 34261991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans.
    Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of exercise intensity on relationship between VO2max and cardiac output.
    Lepretre PM; Koralsztein JP; Billat VL
    Med Sci Sports Exerc; 2004 Aug; 36(8):1357-63. PubMed ID: 15292744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociating external power from intramuscular exercise intensity during intermittent bilateral knee-extension in humans.
    Davies MJ; Benson AP; Cannon DT; Marwood S; Kemp GJ; Rossiter HB; Ferguson C
    J Physiol; 2017 Nov; 595(21):6673-6686. PubMed ID: 28776675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Simple Method to Quantify the V˙O2 Mean Response Time of Ramp-Incremental Exercise.
    Iannetta D; Murias JM; Keir DA
    Med Sci Sports Exerc; 2019 May; 51(5):1080-1086. PubMed ID: 30601794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of the transplanted heart. Implications for the choice of field-test exercise protocol.
    Shephard RJ; Kavanagh T; Mertens D; Qureshi S
    J Cardiopulm Rehabil; 1995; 15(4):288-96. PubMed ID: 8542535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice.
    Ayachi M; Niel R; Momken I; Billat VL; Mille-Hamard L
    Front Physiol; 2016; 7():372. PubMed ID: 27621709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of W(peak), VO2(peak) and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance.
    Bentley DJ; McNaughton LR
    J Sci Med Sport; 2003 Dec; 6(4):422-35. PubMed ID: 14723392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. V̇O
    Korzeniewski B
    Respir Physiol Neurobiol; 2023 May; 311():104023. PubMed ID: 36731708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elucidating determinants of the plateau in oxygen consumption at VO2max.
    Astorino TA; Willey J; Kinnahan J; Larsson SM; Welch H; Dalleck LC
    Br J Sports Med; 2005 Sep; 39(9):655-60; discussion 660. PubMed ID: 16118305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.