These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38842588)

  • 1. Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications.
    Sun Y; Wang H; Xie D
    Nanomicro Lett; 2024 Jun; 16(1):211. PubMed ID: 38842588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological function simulation in neuromorphic devices: from synapse and neuron to behavior.
    Chen H; Li H; Ma T; Han S; Zhao Q
    Sci Technol Adv Mater; 2023; 24(1):2183712. PubMed ID: 36926202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Artificial Sensory Systems Based on Neuromorphic Devices.
    Sun F; Lu Q; Feng S; Zhang T
    ACS Nano; 2021 Mar; 15(3):3875-3899. PubMed ID: 33507725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable Transistor-Structured Artificial Synapses for Neuromorphic Electronics.
    Wang X; Yang H; Li E; Cao C; Zheng W; Chen H; Li W
    Small; 2023 May; 19(18):e2205395. PubMed ID: 36748849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional materials for synaptic electronics and neuromorphic systems.
    Wang S; Zhang DW; Zhou P
    Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in neuromorphic transistors for artificial perception applications: FOCUS ISSUE REVIEW.
    Wang WS; Zhu LQ
    Sci Technol Adv Mater; 2023; 24(1):10-41. PubMed ID: 36605031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Visual Synaptic Architecture with High-Linearity Light-Modulated Weight for Optoelectronic Neuromorphic Computing.
    Liu Y; Wang B; Wu L; Huang L; Lin L; Xiang L; Liu D; Zhang S; Zhu C; Tao Y; Li D; Pan A
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37885218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable Temperature-Responsive Multimodal Neuromorphic Electronic Skin with Spontaneous Synaptic Plasticity Recovery.
    Wang Y; Liu D; Zhang Y; Fan L; Ren Q; Ma S; Zhang M
    ACS Nano; 2022 May; 16(5):8283-8293. PubMed ID: 35451307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term synaptic plasticity in emerging devices for neuromorphic computing.
    Li C; Zhang X; Chen P; Zhou K; Yu J; Wu G; Xiang D; Jiang H; Wang M; Liu Q
    iScience; 2023 Apr; 26(4):106315. PubMed ID: 36950108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SiC@NiO Core-Shell Nanowire Networks-Based Optoelectronic Synapses for Neuromorphic Computing and Visual Systems at High Temperature.
    Shen W; Wang P; Wei G; Yuan S; Chen M; Su Y; Xu B; Li G
    Small; 2024 Apr; ():e2400458. PubMed ID: 38607289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Area Pixelized Optoelectronic Neuromorphic Devices with Multispectral Light-Modulated Bidirectional Synaptic Circuits.
    Kwon SM; Kwak JY; Song S; Kim J; Jo C; Cho SS; Nam SJ; Kim J; Park GS; Kim YH; Park SK
    Adv Mater; 2021 Nov; 33(45):e2105017. PubMed ID: 34553426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging memristive neurons for neuromorphic computing and sensing.
    Li Z; Tang W; Zhang B; Yang R; Miao X
    Sci Technol Adv Mater; 2023; 24(1):2188878. PubMed ID: 37090846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristive Artificial Synapses for Neuromorphic Computing.
    Huang W; Xia X; Zhu C; Steichen P; Quan W; Mao W; Yang J; Chu L; Li X
    Nanomicro Lett; 2021 Mar; 13(1):85. PubMed ID: 34138298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration.
    Xu M; Chen X; Guo Y; Wang Y; Qiu D; Du X; Cui Y; Wang X; Xiong J
    Adv Mater; 2023 Dec; 35(51):e2301063. PubMed ID: 37285592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realization of Biomimetic Synaptic Functions in a One-Cell Organic Resistive Switching Device Using the Diffusive Parameter of Conductive Filaments.
    Lee SH; Park HL; Kim MH; Kim MH; Park BG; Lee SD
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51719-51728. PubMed ID: 33151051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.