BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 38842596)

  • 1. The physiological significance of plasma-accessible carbonic anhydrase in the respiratory systems of fishes.
    Harter TS; Dichiera AM; Esbaugh AJ
    J Comp Physiol B; 2024 Jun; ():. PubMed ID: 38842596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A solution to Nature's haemoglobin knockout: a plasma-accessible carbonic anhydrase catalyses CO
    Harter TS; Sackville MA; Wilson JM; Metzger DCH; Egginton S; Esbaugh AJ; Farrell AP; Brauner CJ
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30291156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel perspective on the evolutionary loss of plasma-accessible carbonic anhydrase at the teleost gill.
    Harter TS; Smith EA; Tresguerres M
    J Exp Biol; 2023 Oct; 226(19):. PubMed ID: 37694374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of gill and blood carbonic anhydrase characteristics in three basal actinopterygian species: alligator gar (Atractosteus spatula), white sturgeon (Acipenser transmontanus) and Senegal bichir (Polypterus senegalus).
    Nelson C; Standen EM; Allen PJ; Brauner CJ
    J Comp Physiol B; 2024 Apr; 194(2):155-166. PubMed ID: 38459993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood and Gill Carbonic Anhydrase in the Context of a Chondrichthyan Model of CO
    McMillan OJL; Dichiera AM; Harter TS; Wilson JM; Esbaugh AJ; Brauner CJ
    Physiol Biochem Zool; 2019; 92(6):554-566. PubMed ID: 31567050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of a single amino acid substitution in reduced red blood cell carbonic anhydrase function of early-diverging fish.
    Dichiera AM; McMillan OJL; Clifford AM; Goss GG; Brauner CJ; Esbaugh AJ
    J Comp Physiol B; 2020 May; 190(3):287-296. PubMed ID: 32146532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonic anhydrase activity in tissues of the icefish Chionodraco hamatus and of the red-blooded teleosts Trematomus bernacchii and Anguilla anguilla.
    Maffia M; Rizzello A; Acierno R; Rollo M; Chiloiro R; Storelli C
    J Exp Biol; 2001 Nov; 204(Pt 22):3983-92. PubMed ID: 11807116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.
    Randall DJ; Rummer JL; Wilson JM; Wang S; Brauner CJ
    J Exp Biol; 2014 Apr; 217(Pt 8):1205-14. PubMed ID: 24744420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular distribution and characterization of gill carbonic anhydrase and evidence for a plasma carbonic anhydrase inhibitor in Antarctic fish.
    Tufts BL; Gervais MR; Staebler M; Weaver J
    J Comp Physiol B; 2002 May; 172(4):287-95. PubMed ID: 12037591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional divergence of teleost carbonic anhydrase 4.
    Dichiera AM; De Anda V; Gilmour KM; Baker BJ; Esbaugh AJ
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Mar; 277():111368. PubMed ID: 36642322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atlas of plasma-accessible carbonic anhydrase availability in the model teleost, the rainbow trout.
    Nelson C; Dichiera AM; Jung EH; Brauner CJ
    J Comp Physiol B; 2023 Jun; 193(3):293-305. PubMed ID: 37029801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Teleost red blood cells actively enhance the passive diffusion of oxygen that was discovered by August Krogh.
    Harter TS; Brauner CJ
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Mar; 253():110855. PubMed ID: 33259891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss.
    Harter TS; May AG; Federspiel WJ; Supuran CT; Brauner CJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R397-R407. PubMed ID: 29641235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced oxygen unloading in two marine percomorph teleosts.
    Shu JJ; Heuer RM; Hannan KD; Stieglitz JD; Benetti DD; Rummer JL; Grosell M; Brauner CJ
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Feb; 264():111101. PubMed ID: 34755650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional support for a novel mechanism that enhances tissue oxygen extraction in a teleost fish.
    Harter TS; Zanuzzo FS; Supuran CT; Gamperl AK; Brauner CJ
    Proc Biol Sci; 2019 May; 286(1903):20190339. PubMed ID: 31138074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas transfer in dogfish: a unique model of CO2 excretion.
    Gilmour KM; Perry SF
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Apr; 155(4):476-85. PubMed ID: 19896550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular carbonic anhydrase activity and carbonic anhydrase inhibitors in the circulatory system of fish.
    Henry RP; Gilmour KM; Wood CM; Perry SF
    Physiol Zool; 1997; 70(6):650-9. PubMed ID: 9361139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of plasma accessible and cytosolic carbonic anhydrases in bicarbonate (HCO
    Giacomin M; Drummond JM; Supuran CT; Goss GG
    J Comp Physiol B; 2022 Nov; 192(6):713-725. PubMed ID: 36098803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between ion and gas transfer in freshwater teleost fish.
    Randall DJ; Brauner C
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):3-8. PubMed ID: 11253798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing rainbow trout (Oncorhynchus mykiss) lose branchial plasma accessible carbonic anhydrase expression with hatch and the transition to pH-sensitive, adult hemoglobin polymorphs.
    Nelson C; Dichiera AM; Brauner CJ
    J Comp Physiol B; 2024 May; ():. PubMed ID: 38698121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.