These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38842901)

  • 41. Low tensor train and low multilinear rank approximations of 3D tensors for compression and de-speckling of optical coherence tomography images.
    Kopriva I; Shi F; Lai M; Štanfel M; Chen H; Chen X
    Phys Med Biol; 2023 Jun; 68(12):. PubMed ID: 37201537
    [No Abstract]   [Full Text] [Related]  

  • 42. Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification.
    Wang X; Chen H; Xiang H; Lin H; Lin X; Heng PA
    Med Image Anal; 2021 May; 70():102010. PubMed ID: 33677262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Machine learning classification of multiple sclerosis in children using optical coherence tomography.
    Ciftci Kavaklioglu B; Erdman L; Goldenberg A; Kavaklioglu C; Alexander C; Oppermann HM; Patel A; Hossain S; Berenbaum T; Yau O; Yea C; Ly M; Costello F; Mah JK; Reginald A; Banwell B; Longoni G; Ann Yeh E
    Mult Scler; 2022 Dec; 28(14):2253-2262. PubMed ID: 35946086
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Feb; 256(2):259-265. PubMed ID: 29159541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Live 4D-OCT denoising with self-supervised deep learning.
    Nienhaus J; Matten P; Britten A; Scherer J; Höck E; Freytag A; Drexler W; Leitgeb RA; Schlegl T; Schmoll T
    Sci Rep; 2023 Apr; 13(1):5760. PubMed ID: 37031338
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of response to anti-vascular endothelial growth factor treatment in diabetic macular oedema using an optical coherence tomography-based machine learning method.
    Cao J; You K; Jin K; Lou L; Wang Y; Chen M; Pan X; Shao J; Su Z; Wu J; Ye J
    Acta Ophthalmol; 2021 Feb; 99(1):e19-e27. PubMed ID: 32573116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction and Detection of Glaucomatous Visual Field Progression Using Deep Learning on Macular Optical Coherence Tomography.
    Huang J; Galal G; Mukhin V; Etemadi M; Tanna AP
    J Glaucoma; 2024 Apr; 33(4):246-253. PubMed ID: 38245813
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automatic choroidal segmentation in OCT images using supervised deep learning methods.
    Kugelman J; Alonso-Caneiro D; Read SA; Hamwood J; Vincent SJ; Chen FK; Collins MJ
    Sci Rep; 2019 Sep; 9(1):13298. PubMed ID: 31527630
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images.
    Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G
    Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A rare case of type 1 unilateral 'peripheral' Peters' anomaly.
    Shah C; Sen P; Mohan A; Chandra K; Jain E
    Indian J Ophthalmol; 2019 Oct; 67(10):1702-1703. PubMed ID: 31546519
    [No Abstract]   [Full Text] [Related]  

  • 51. Two-dimensional segmentation of the retinal vascular network from optical coherence tomography.
    Rodrigues P; Guimarães P; Santos T; Simão S; Miranda T; Serranho P; Bernardes R
    J Biomed Opt; 2013 Dec; 18(12):126011. PubMed ID: 24343442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT.
    Sonobe T; Tabuchi H; Ohsugi H; Masumoto H; Ishitobi N; Morita S; Enno H; Nagasato D
    Int Ophthalmol; 2019 Aug; 39(8):1871-1877. PubMed ID: 30218173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of OCT
    Yuan Z; Yang D; Zhao J; Liang Y
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38749469
    [No Abstract]   [Full Text] [Related]  

  • 54. A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography.
    Boi A; Jamthikar AD; Saba L; Gupta D; Sharma A; Loi B; Laird JR; Khanna NN; Suri JS
    Curr Atheroscler Rep; 2018 May; 20(7):33. PubMed ID: 29781047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated machine learning-based classification of proliferative and non-proliferative diabetic retinopathy using optical coherence tomography angiography vascular density maps.
    Khalili Pour E; Rezaee K; Azimi H; Mirshahvalad SM; Jafari B; Fadakar K; Faghihi H; Mirshahi A; Ghassemi F; Ebrahimiadib N; Mirghorbani M; Bazvand F; Riazi-Esfahani H; Riazi Esfahani M
    Graefes Arch Clin Exp Ophthalmol; 2023 Feb; 261(2):391-399. PubMed ID: 36050474
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward Ground-Truth Optical Coherence Tomography via Three-Dimensional Unsupervised Deep Learning Processing and Data.
    Ni G; Wu R; Zheng F; Li M; Huang S; Ge X; Liu L; Liu Y
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2395-2407. PubMed ID: 38324426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vivo automated quantification of thermally damaged human tissue using polarization sensitive optical coherence tomography.
    Dubey K; Srivastava V; Dalal K
    Comput Med Imaging Graph; 2018 Mar; 64():22-28. PubMed ID: 29395464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical Coherence Tomography Image Classification Using Hybrid Deep Learning and Ant Colony Optimization.
    Khan A; Pin K; Aziz A; Han JW; Nam Y
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571490
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human selection bias drives the linear nature of the more ground truth effect in explainable deep learning optical coherence tomography image segmentation.
    Maloca PM; Pfau M; Janeschitz-Kriegl L; Reich M; Goerdt L; Holz FG; Müller PL; Valmaggia P; Fasler K; Keane PA; Zarranz-Ventura J; Zweifel S; Wiesendanger J; Kaiser P; Enz TJ; Rothenbuehler SP; Hasler PW; Juedes M; Freichel C; Egan C; Tufail A; Scholl HPN; Denk N
    J Biophotonics; 2024 Feb; 17(2):e202300274. PubMed ID: 37795556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Comparison of scanning laser polarimetry, optical coherence tomography 1 and Stratus optical coherence tomography for the detection of axonal loss in band atrophy of the optic nerve].
    Leal BC; Moura FC; Monteiro ML
    Arq Bras Oftalmol; 2006; 69(4):531-7. PubMed ID: 17119726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.