BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38842913)

  • 1. Replication protein A dynamically re-organizes on primer/template junctions to permit DNA polymerase δ holoenzyme assembly and initiation of DNA synthesis.
    Norris JL; Rogers LO; Pytko KG; Dannenberg RL; Perreault S; Kaushik V; Kuppa S; Antony E; Hedglin M
    Nucleic Acids Res; 2024 Jun; ():. PubMed ID: 38842913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of macromolecular interactions during assembly of human DNA polymerase δ holoenzymes and initiation of DNA synthesis.
    Norris JL; Rogers LO; Pytko KG; Dannenberg RL; Perreault S; Kaushik V; Kuppa S; Antony E; Hedglin M
    bioRxiv; 2023 May; ():. PubMed ID: 37215012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA.
    Chilkova O; Stenlund P; Isoz I; Stith CM; Grabowski P; Lundström EB; Burgers PM; Johansson E
    Nucleic Acids Res; 2007; 35(19):6588-97. PubMed ID: 17905813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis.
    Hedglin M; Pandey B; Benkovic SJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1777-86. PubMed ID: 26976599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fidelity of eucaryotic DNA polymerase delta holoenzyme from Schizosaccharomyces pombe.
    Chen X; Zuo S; Kelman Z; O'Donnell M; Hurwitz J; Goodman MF
    J Biol Chem; 2000 Jun; 275(23):17677-82. PubMed ID: 10748208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic DNA-bound PCNA complexes co-ordinate Okazaki fragment synthesis, processing and ligation.
    Matsumoto Y; Brooks RC; Sverzhinsky A; Pascal JM; Tomkinson AE
    J Mol Biol; 2020 Dec; 432(24):166698. PubMed ID: 33157085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking of progressing human DNA polymerase δ holoenzymes reveals distributions of DNA lesion bypass activities.
    Dannenberg RL; Cardina JA; Pytko KG; Hedglin M
    Nucleic Acids Res; 2022 Sep; 50(17):9893-9908. PubMed ID: 36107777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA.
    Langston LD; O'Donnell M
    J Biol Chem; 2008 Oct; 283(43):29522-31. PubMed ID: 18635534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise assembly of the human replicative polymerase holoenzyme.
    Hedglin M; Perumal SK; Hu Z; Benkovic S
    Elife; 2013 Apr; 2():e00278. PubMed ID: 23577232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication factor C disengages from proliferating cell nuclear antigen (PCNA) upon sliding clamp formation, and PCNA itself tethers DNA polymerase delta to DNA.
    Podust VN; Tiwari N; Stephan S; Fanning E
    J Biol Chem; 1998 Nov; 273(48):31992-9. PubMed ID: 9822671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication of [AT/TA]
    Pytko KG; Dannenberg RL; Eckert KA; Hedglin M
    bioRxiv; 2023 Nov; ():. PubMed ID: 37986888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Assembly and Disassembly of the Human DNA Polymerase δ Holoenzyme on the Genome In Vivo.
    Drosopoulos WC; Vierra DA; Kenworthy CA; Coleman RA; Schildkraut CL
    Cell Rep; 2020 Feb; 30(5):1329-1341.e5. PubMed ID: 32023453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and distributive action of an archaeal DNA polymerase holoenzyme.
    Bauer RJ; Wolff ID; Zuo X; Lin HK; Trakselis MA
    J Mol Biol; 2013 Nov; 425(23):4820-36. PubMed ID: 24035812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fidelity of DNA polymerase delta holoenzyme from Saccharomyces cerevisiae: the sliding clamp proliferating cell nuclear antigen decreases its fidelity.
    Hashimoto K; Shimizu K; Nakashima N; Sugino A
    Biochemistry; 2003 Dec; 42(48):14207-13. PubMed ID: 14640688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork.
    Schauer GD; O'Donnell ME
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication protein A dynamically regulates monoubiquitination of proliferating cell nuclear antigen.
    Hedglin M; Aitha M; Pedley A; Benkovic SJ
    J Biol Chem; 2019 Mar; 294(13):5157-5168. PubMed ID: 30700555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication of [AT/TA]
    Pytko KG; Dannenberg RL; Eckert KA; Hedglin M
    Biochemistry; 2024 Apr; 63(8):969-983. PubMed ID: 38623046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast 9-1-1 complex acts as a sliding clamp for DNA synthesis by DNA polymerase ε.
    Acharya N; Prakash L; Prakash S
    J Biol Chem; 2023 Jan; 299(1):102727. PubMed ID: 36410434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase ε efficiently loads the PCNA sliding clamp.
    Fujisawa R; Ohashi E; Hirota K; Tsurimoto T
    Nucleic Acids Res; 2017 May; 45(8):4550-4563. PubMed ID: 28199690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RPA and PCNA suppress formation of large deletion errors by yeast DNA polymerase delta.
    Fortune JM; Stith CM; Kissling GE; Burgers PM; Kunkel TA
    Nucleic Acids Res; 2006; 34(16):4335-41. PubMed ID: 16936322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.