These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3884295)

  • 41. Simultaneous separate detection of low angle and large angle light scattering in an arc lamp-based flow cytometer.
    Steen HB
    Cytometry; 1986 Sep; 7(5):445-9. PubMed ID: 3757693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of CD45 fluorescence and side-scatter characteristics for gating lymphocytes when using the whole blood lysis procedure and flow cytometry.
    Nicholson JK; Hubbard M; Jones BM
    Cytometry; 1996 Mar; 26(1):16-21. PubMed ID: 8809476
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores.
    Swatkoski S; Russell SC; Edwards N; Fenselau C
    Anal Chem; 2006 Jan; 78(1):181-8. PubMed ID: 16383326
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction, crystal structure and application of a recombinant protein that lacks the collagen-like region of BclA from Bacillus anthracis spores.
    Liu CQ; Nuttall SD; Tran H; Wilkins M; Streltsov VA; Alderton MR
    Biotechnol Bioeng; 2008 Mar; 99(4):774-82. PubMed ID: 17879302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth of Azotobacter vinelandii with correlation of Coulter cell size, flow cytometric parameters, and ultrastructure.
    Allman R; Hann AC; Phillips AP; Martin KL; Lloyd D
    Cytometry; 1990; 11(7):822-31. PubMed ID: 2125552
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light scattering measurement in an arc lamp-based flow cytometer.
    Steen HB
    Cytometry; 1990; 11(2):223-30. PubMed ID: 2180652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An innovation in flow cytometry data collection and analysis producing a correlated multiple sample analysis in a single file.
    Robinson JP; Durack G; Kelley S
    Cytometry; 1991; 12(1):82-90. PubMed ID: 1999125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Time, a quality-control parameter in flow cytometry.
    Watson JV
    Cytometry; 1987 Nov; 8(6):646-9. PubMed ID: 3428046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using multi-parameter flow cytometry to monitor the yeast Rhodotorula glutinis CCMI 145 batch growth and oil production towards biodiesel.
    da Silva TL; Feijão D; Reis A
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2166-76. PubMed ID: 20499288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modified histogram subtraction technique for analysis of flow cytometry data.
    Overton WR
    Cytometry; 1988 Nov; 9(6):619-26. PubMed ID: 3061754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of immunofluorescence measurements of individual bacteria in direct and indirect assays for Bacillus anthracis and Bacillus cereus spores.
    Phillips AP; Martin KL
    J Appl Bacteriol; 1982 Oct; 53(2):223-31. PubMed ID: 6819288
    [No Abstract]   [Full Text] [Related]  

  • 52. Autofluorescence as a viability marker for detection of bacterial spores.
    Laflamme C; Verreault D; Lavigne S; Trudel L; Ho J; Duchaine C
    Front Biosci; 2005 May; 10():1647-53. PubMed ID: 15769654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-parameter data acquisition system for rapid slit-scan analysis of mammalian chromosomes.
    Weier HU; Eisert WG
    Cytometry; 1987 Jan; 8(1):83-90. PubMed ID: 3803098
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of nanoparticles for the detection and sorting of pathogenic bacteria by flow-cytometry.
    Zahavy E; Ber R; Gur D; Abramovich H; Freeman E; Maoz S; Yitzhaki S
    Adv Exp Med Biol; 2012; 733():23-36. PubMed ID: 22101709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variations on the staining method in quantitative indirect immunofluorescence assays for Bacillus spores, and the use of fluorescein--protein A.
    Phillips AP; Martin KL
    J Immunol Methods; 1982 Nov; 54(3):361-9. PubMed ID: 6184416
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improvement of Bacillus subtilis Spore Enumeration and Label Analysis in Flow Cytometry.
    Alves KC; Chaves YO; Almeida ME; Vasconcelos MG; Nogueira PA; Melo J; Marques J; Zuliani JP; Boeno CN; Paloschi MV; Isticato R; Ricca E; Mariúba LA
    J Vis Exp; 2023 Jun; (196):. PubMed ID: 37458460
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Basics of flow cytometry.
    Radcliff G; Jaroszeski MJ
    Methods Mol Biol; 1998; 91():1-24. PubMed ID: 9664477
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of fluorescent nanocrystals (q-dots) for the detection of pathogenic bacteria by flow-cytometry.
    Zahavy E; Heleg-Shabtai V; Zafrani Y; Marciano D; Yitzhaki S
    J Fluoresc; 2010 Jan; 20(1):389-99. PubMed ID: 19826932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct and indirect immunofluorescence analysis of bacterial populations by flow cytometry.
    Phillips AP; Martin KL; Capey AJ
    J Immunol Methods; 1987 Aug; 101(2):219-28. PubMed ID: 3112240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and characterization of two subpopulations of Encephalitozoon intestinalis.
    Hoffman RM; Marshall MM; Polchert DM; Jost BH
    Appl Environ Microbiol; 2003 Aug; 69(8):4966-70. PubMed ID: 12902292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.