These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 38843)

  • 1. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes.
    Zade-Oppen AM; Schooler JM; Cook P; Tosteson DC
    Biochim Biophys Acta; 1979 Aug; 555(2):285-98. PubMed ID: 38843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the lithium transport across the red cell membrane. II. Characterization of ouabain-sensitive and ouabain-insensitive Li+ transport. Effects of bicarbonate and dipyridamole.
    Duhm J; Becker BF
    Pflugers Arch; 1977 Jan; 367(3):211-9. PubMed ID: 13345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A change in the internal affinity of LK goat red-cell sodium pumps induced by high pH.
    Ellory JC; Maher P
    Biochim Biophys Acta; 1977 Nov; 471(1):111-7. PubMed ID: 21689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of potassium ions and ATP on the sodium pump of resealed red cell ghosts.
    Eisner DA; Richards DE
    J Physiol; 1981; 319():403-18. PubMed ID: 7320919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump.
    Dissing S; Hoffman JF
    J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation and inhibition by ATP and orthophosphate of the potassium-potassium exchange in resealed red cell ghosts.
    Eisner DA; Richards DE
    J Physiol; 1983 Feb; 335():495-506. PubMed ID: 6875890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+-K+ pump activities of high- and low-potassium sheep red cells with internal magnesium and calcium altered by A23187.
    Fujise H; Lauf PK
    J Physiol; 1988 Nov; 405():605-14. PubMed ID: 3151371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium: potassium exchange catalysed by the sodium pump in human red cells.
    Simons TJ
    J Physiol; 1974 Feb; 237(1):123-55. PubMed ID: 4822584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate from the phosphointermediate (EP) of the human red blood cell Na/K pump is coeffluxed with Na, in the absence of external K.
    Marín R; Hoffman JF
    J Gen Physiol; 1994 Jul; 104(1):1-32. PubMed ID: 7964591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-pumped sodium fluxes in human red blood cells. Evidence for facilitated diffusion.
    Beaugé L
    Biochim Biophys Acta; 1975 Aug; 401(1):95-108. PubMed ID: 1148290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outward sodium and potassium cotransport in human red cells.
    Garay R; Adragna N; Canessa M; Tosteson D
    J Membr Biol; 1981; 62(3):169-74. PubMed ID: 7328628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active sodium and potassium transport in high potassium and low potassium sheep red cells.
    Hoffman PG; Tosteson DC
    J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ATP dependence of a ouabain-sensitive sodium efflux activated by external sodium, potassium and lithium in human red cells.
    Beaugé LA; Del Campillo E
    Biochim Biophys Acta; 1976 May; 433(3):547-54. PubMed ID: 1276192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of metabolic depletion on the furosemide-sensitive Na and K fluxes in human red cells.
    Dagher G; Brugnara C; Canessa M
    J Membr Biol; 1985; 86(2):145-55. PubMed ID: 2993628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red cell sodium fluxes catalysed by the sodium pump in the absence of K+ and ADP.
    Lee KH; Blostein R
    Nature; 1980 May; 285(5763):338-9. PubMed ID: 6246454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of membrane cholesterol on the sodium pump in red blood cells.
    Claret M; Garay R; Giraud F
    J Physiol; 1978 Jan; 274():247-63. PubMed ID: 624995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH, potential, chloride and furosemide on passive Na+ and K+ effluxes from human red blood cells.
    Zade-Oppen AM; Adragna NC; Tosteson DC
    J Membr Biol; 1988 Aug; 103(3):217-25. PubMed ID: 3184174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effect of chloride on (Na+K) co-transport in human red blood cells.
    Chipperfield AR
    Nature; 1980 Jul; 286(5770):281-2. PubMed ID: 6250053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes.
    Duhm J; Becker BF
    J Membr Biol; 1979 Dec; 51(3-4):263-86. PubMed ID: 43898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes.
    Mercer RW; Dunham PB
    J Gen Physiol; 1981 Nov; 78(5):547-68. PubMed ID: 6273495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.